

14

4 • MXDJ.COM 6 • 2004

20

Avoiding CSS Pitfalls
Hacks for frustrated designers

by zoe gillenwater

Custom Tools
A new world in the Flash IDE

by keith peters

Call in the Specialist
Fireworks MX does a lot;

these tools do the rest
by charles e. brown

22 30

june 2004

NeXTensio2
by InterAKT

Create databases in
next to no time

reviewed by
russell stearman

7
RoboDemo:

Lynchpin of the
E-Learning Market

The future of how we
learn software

by charles e. brown

6 • 2004 MXDJ.COM • 5

The Tricks to Tracing
Save your energy for

designing and drawing
by ron rockwell

Freaks & Geeks
The saga continues

by tom green

Building Tooltips
What does this button do?

by irv kalb

504234

29 xile
Cartoon
by louis f. cuffari12 news

NewsFlash 58
vanguard
Church of Fools
by specialmoves

on the cover

he whole process of creating tools is fairly complicat-

ed – "Custom Tools: A new world in the Flash IDE"

aims to make the process a bit more clear. Hopefully

it will inspire you to begin making your own...and

sharing them.

t

MXDJ.COM • 7

here is a little bit of irony going on

here: this is an article about a soft-

ware package that will go a long

way toward rendering printed technical

media, such as this journal, obsolete.

Last year Macromedia purchased the

company eHelp and, as a result, acquired

RoboHelp, RoboInfo, RoboHelp for

Framemaker, RoboPDF, and RoboDemo.

This purchase, in my opinion, has made

Macromedia a major player in the e-

learning/e-publishing market. In this arti-

cle, we are going to focus on the lynch-

pin of that market: RoboDemo.

RoboDemo is a way to create highly

interactive software simulations. This

means that you can record the steps

necessary (mouse movements, key

strokes, menu options, etc.) to accom-

plish a task in a video. However, as you

will soon see, that is not the end of the

possibilities.

Creating a Movie
As a simple example, let’s assume

that I want to demonstrate how to start a

new HTML document in Dreamweaver. I

would begin by opening Dreamweaver

and RoboDemo. Image I shows the open-

ing RoboDemo screen.

A screen will come up allowing you

to select the open program you want to

record the video in. This screen is shown

in Image II.

After selecting, in this case,

Macromedia Dreamweaver MX 2004, a

Group Publisher Jeremy Geelan
Art Director Louis F. Cuffari

EDITORIAL BOARD
Dreamweaver Editor
Dave McFarland
Flash Editor
Jesse Warden
Fireworks Editor
Kleanthis Economou
FreeHand Editor
Louis F. Cuffari
Ron Rockwell
ColdFusion Editor
Robert Diamond

INTERNATIONAL ADVISORY BOARD
Jens Christian Brynildsen Norway,
David Hurrows UK, Joshua Davis USA,
Jon Gay USA, Craig Goodman USA,
Phillip Kerman USA, Danny Mavromatis USA,
Colin Moock Canada, Jesse Nieminen USA,
Gary Rosenzweig USA, John Tidwell USA

EDITORIAL
Executive Editors
Gail Schultz, 201 802-3043
gail@sys-con.com
Jamie Matusow, 201 802-3042
jamie@sys-con.com

Editors
Nancy Valentine, 201 802-3044
nancy@sys-con.com
Jennifer Van Winckel, 201 802-3052
jennifer@sys-con.com

Assistant Editor
Torrey Gaver, 201 802-3041
torrey@sys-con.com

Technical Editors
James Newton • Sarge Sargent

To submit a proposal for an article, go to
http://grids.sys-con.com/proposal.

Subscriptions
E-mail: subscribe@sys-con.com
U.S. Toll Free: 888 303-5282
International: 201 802-3012
Fax: 201 782-9600
Cover Price U.S. $5.99
U.S. $29.99 (12 issues/1 year)
Canada/Mexico: $49.99/year
International: $59.99/year
Credit Card, U.S. Banks or Money Orders
Back Issues: $12/each

Editorial and Advertising Offices
Postmaster: Send all address changes to:
SYS-CON Media
135 Chestnut Ridge Rd.
Montvale, NJ 07645

Worldwide Newsstand Distribution
Curtis Circulation Company, New Milford, NJ

List Rental Information
Kevin Collopy: 845 731-2684,
kevin.collopy@edithroman.com,
Frank Cipolla: 845 731-3832,
frank.cipolla@epostdirect.com

Promotional Reprints
Kristin Kuhnle, 201 802-3026
kristin@sys-con.com

Copyright © 2004
by SYS-CON Publications, Inc. All rights
reserved. No part of this publication may be
reproduced or transmitted in any form or by any
means, electronic or mechanical, including
photocopy or any information storage and
retrieval system, without written permission.

MX Developer’s Journal (ISSN#1546-2242)
is published monthly (12 times a year) by
SYS-CON Publications, Inc., 135 Chestnut
Ridge Road, Montvale, NJ 07645.

SYS-CON Media and SYS-CON Publications,
Inc., reserve the right to revise, republish, and
authorize its readers to use the articles submit-
ted for publication. MX and MX-based marks
are trademarks or registered trademarks of
Macromedia, in the United States and other
countries. SYS-CON Publications, Inc., is inde-
pendent of Macromedia. All brand and product
names used on these pages are trade names,
service marks or trademarks of their respective
companies.

sp
o

tlig
h

t

t
The future of how we learn software

by charles e. brown

RoboDemo: Lynchpin of
the E-Learning Market

im
a

g
e

 I
im

a
g

e
 I

I

8 • MXDJ.COM

sp
o

tl
ig

h
t

SYS-CON MEDIA
President & CEO
Fuat Kircaali, 201 802-3001
fuat@sys-con.com
Vice President, Business Development
Grisha Davida, 201 802-3004
grisha@sys-con.com
Group Publisher
Jeremy Geelan, 201 802-3040
jeremy@sys-con.com

ADVERTISING
Senior Vice President, Sales & Marketing
Carmen Gonzalez, 201 802-3021
carmen@sys-con.com
Vice President, Sales & Marketing
Miles Silverman , 201 802-3029
miles@sys-con.com
Advertising Sales Director
Robyn Forma, 201 802-3022
robyn@sys-con.com
Advertising Sales Manager
Megan Mussa, 201 802-3023
megan@sys-con.com
Associate Sales Managers
Kristin Kuhnle, 201 802-3025
kristin@sys-con.com
Beth Jones, 201 802-3028
beth@sys-con.com
Dorothy Gil, 201 802-3024.3
dorothy@sys-con.com

PRODUCTION
Production Consultant
Jim Morgan, 201 802-3033
jim@sys-con.com
Lead Designer
Louis F. Cuffari, 201 802-3035
louis@sys-con.com
Art Director
Alex Botero, 201 802-3031
alex@sys-con.com
Associate Art Director
Richard Silverberg, 201 802-3036
richards@sys-con.com
Assistant Art Director
Tami Beatty, 201 802-3038
tami@sys-con.com

SYS-CON.COM
Vice President, Information Systems
Robert Diamond, 201 802-3051
robert@sys-con.com
Web Designers
Stephen Kilmurray, 201 802-3053
stephen@sys-con.com
Matthew Pollotta, 201 802-3054
matthew@sys-con.com
Online Editor
Lin Goetz, 201 802-3045
lin@sys-con.com

ACCOUNTING
Financial Analyst
Joan LaRose, 201 802-3081
joan@sys-con.com
Accounts Payable
Betty White, 201 802-3002
betty@sys-con.com

EVENTS
President, SYS-CON Events
Grisha Davida, 201 802-3004
grisha@sys-con.com
Conference Manager
Lin Goetz, 201 802-3045
lin@sys-con.com

CUSTOMER RELATIONS
Circulation Service Coordinators
Shelia Dickerson, 201 802-3082
shelia@sys-con.com
Edna Earle Russell, 201 802-3081
edna@sys-con.com
Linda Lipton, 201 802-3012
linda@sys-con.com
JDJ Store Manager
Brundila Staropoli, 201 802-3000
bruni@sys-con.com

screen comes up that allows you to pick

the hot keys you want to use to start and

stop the recording process. There are

suggested defaults which, in most cases,

work fine.

You are then taken to the application

you are recording with a panel, as shown

in Image III, in the upper left corner.

At this point, there are adjustable

graphic handles that will allow you to

block out the area of the application in

which you want to record. In most cases,

however, you will use the default of the

full screen.

After selecting Record, you simply go

through the steps necessary to accom-

plish the task you want to show. Once

you complete the steps, press the End

key and RoboDemo will build the video.

When completed, you will be returned to

RoboDemo with thumbnails of the key

frames of the video. You can see this in

Image IV.

You can now preview the video in

either RoboDemo’s own player, or in your

Web browser. The one thing that will

strike you is that RoboDemo automatical-

ly added some captions for you. – an

example of this is shown in Image V.

These captions are fully editable for

both content and style. In addition, you

can create your own captions and place

them where they are necessary.

E-Learning
If you are on a sales team and want to

demonstrate the features of your soft-

ware, you have a powerful tool. However,

RoboDemo now goes one step further. If

you are doing this demo as part of an e-

learning project, RoboDemo will now

allow you to create an interactive situa-

tion that will allow users to try the steps

themselves. You can even program the

responses to right and wrong choices.

To create the interactivity, all you

need to do is double-click on the thumb-

nail frame to which you want to attach

the interactivity. Once open, you select

Insert>Click Box. You will be brought to

the dialogue box shown in Image VI.

Here you can decide how the movie

will respond to right and wrong respons-

es. Notice that you can add Success and

Failure captions. Also, if you are comfort-

able with programming, you can tie the

movie into a JavaScript file.

If you are in an e-learning environ-

ment, chances are you will need to test

the student and track the scores. You can

insert Quiz Frames as shown in Image VII.

Here you can decide the questions

asked, the type of answers, scoring, and

responses to right and wrong answers.

To aid the in the learning process,

RoboDemo even allows for branching.

For instance, let’s assume someone

answers a question incorrectly about

attaching a template in Dreamweaver.

You could branch into a movie that

would review those steps in greater

detail. If the user answered the question

correctly, you could simply move on to

the next topic.

If all this is not enough, you will

notice in Images VI and VII that there is a

tab to help decide scoring for the

response. This could be important for

im
a

g
e

 I
II

im
a

g
e

 I
V

im
a

g
e

 V

6 • 2004

MXDJ
Section Editors

Dreamweaver
Dave McFarland

Author of Dreamweaver MX 2004: The Missing

Manual, Dave can be relied upon to bring

Dreamweaver MX to life for MXDJ readers with

clarity, authority, and good humor.

Flash
Jesse Warden

A multimedia engineer and Flash developer,

Jesse maintains a Flash blog at www.jesse

warden.com and says, referring to the MX prod-

uct range, that "Things are changing, opportunity

is on the frontier, a paradigm shift is occurring for

Web design, Web applications, et al."

Fireworks
Kleanthis Economou

A Web developer/software engineer since 1995,

now specializing in .NET Framework solutions,

Kleanthis is a contributing author of various

Fireworks publications and is the technical editor

of the Fireworks MX Bible. As an extension

developer, he contributed two extensions to the

latest release of Fireworks.

FreeHand
Louis F. Cuffari

Cofounder and art director of Insomnia Creations

(www.insomniacreations.com), Louis has spent

most of his life as a studio artist, including medi-

ums from charcoal portraits to oil/acrylic on can-

vas. In addition to studio art, he has been

involved in several motion picture projects in the

facility of directing, screenwriting, and art direc-

tion. Louis’s creative works expand extensively

into graphic design, and he has expertise in both

Web and print media. He is deputy art director

for SYS-CON Media and the designer

of MX Developer’s Journal.

Ron Rockwell
Illustrator, designer, author, and Team

Macromedia member, Ron Rockwell lives and

works with his wife, Yvonne, in the Pocono

Mountains of Pennsylvania. Ron is MXDJ’s

FreeHand editor and the author of FreeHand 10

f/x & Design, and coauthor of Studio MX Bible

and the Digital Photography Bible. He has Web

sites at www.nidus-corp.com and

www.brainstormer.org.

ColdFusion
Robert Diamond

Vice president of information systems for

SYS-CON Media and editor-in-chief of

ColdFusion Developer’s Journal, Robert was

named one of the "Top thirty magazine industry

executives under the age of 30" in Folio maga-

zine’s November 2000 issue. He holds a BS

degree in information management and technol-

ogy from the School of Information Studies at

Syracuse University. www.robertdiamond.com

10 • MXDJ.COM

im
a

g
e

 V
I

im
a

g
e

 V
II

6 • 2004 MXDJ.COM • 11

spotlight

corporate and academic environments.

As a matter of fact, RoboDemo is SCORM-

and AICC-compliant in order to integrate

with a Learning Management System.

If you are in a corporate environment

and need to analyze scores, RoboDemo

will generate a manifest that will inte-

grate with an XML file created for this

purpose.

I work with Macromedia’s

Authorware often to create learning pro-

grams. Integration of RoboDemo into

Authorware is nearly seamless. However,

I got my best results when I either

exported the movies as SWF files or

incorporated them into larger Flash pre-

sentations.

PowerPoint Integration
One of the features I found especially

interesting was how RoboDemo integrat-

ed with Microsoft PowerPoint.

You can easily place PowerPoint slides

between existing frames of the

RoboDemo movie. This helps to make the

presentation run smoother by allowing

you to add slides with descriptive text. By

simply selecting Insert>PowerPoint

Frame you are presented with the dia-

logue box shown in Image VIII.

Here you can import a single slide or

an entire PowerPoint presentation. This

can be handy in both demonstration and

e-learning situations.

Nowhere is this integration more

noticeable than in RoboDemo’s

MenuBuilder feature.

In many situations you may want to

break your presentation down to a series

of shorter movies rather than one long

movie. MenuBuilder employs Microsoft

PowerPoint to create a menu so

that the user can choose what

movie/demonstration they want

to see. The menu can then be

incorporated into the project.

As an interesting note, I

recently did a RoboDemo tutori-

al with 10 movies and a

PowerPoint menu to connect

them together. I then exported

the menu as an EXE file and put

the whole tutorial on a CD for

distribution.

If you are not a PowerPoint user,

don’t worry. RoboDemo has a built-in

means of creating text slides with a feature

called the Text Animator. This is shown in

Image IX.

Here we can create simple text slides

and transition effects for the text. While,

in my opinion, it does not have the flexi-

bility of PowerPoint, it does get the job

done quite nicely. I found it especially

helpful in creating an Introduction and

Exit for the presentation.

Of course, the best solution of all is to

integrate your movies within Flash. Let’s

take a quick look at that, as well as vari-

ous other output options.

Output
RoboDemo offers a variety of outputs.

As we just mentioned, you can export as

an EXE file. However, if you want to really

create a very professional looking presen-

tation, you might want to consider

exporting the movies as Flash SWF file.

By doing that, you can incorporate your

movies within a larger Flash presentation.

Using the power of the Flash timeline

allows you to integrate sound, movies,

text, and transitions seamlessly. In my

opinion, after integrating RoboDemo

and Flash, you will not want to go any

other way. The presentational possibili-

ties are nearly endless.

Unfortunately, if you want to create

Flash editable FLA files, you will need to

purchase an add-on module for $99.00.

During output you can also set an

expiration date. This option will prevent

the movie from being seen past a certain

date. This can be handy for versioning

control.

You can also e-mail your movie from

within RoboDemo. You can email it as a

SWF, EXE (Windows or Linux), or HQX for

the Macintosh.

While exporting, you can also select

from a number of playback control styles

or, if you want, design your own control

graphics using BMP graphic images.

If bandwidth size is a concern, you

can quickly get the statistics of your

movie with the Bandwidth Monitor

shown in Image X.

Here you can analyze your movie

either textually or graphically. In addition,

you can break the analysis down to indi-

vidual frames and components.

Conclusion
Due to space constraints we could

only touch on the main points of this

remarkable and feature-rich program.

Whether for sales presentation or instruc-

tional design, this program is going to

change how you design your solutions.

Macromedia has a 15-day trial version

available for download on its site. Trust

me, once you try it you will be sold.

im
a

g
e

 V
II

I

im
a

g
e

 I
X

im
a

g
e

 X

Charles E. Brown is

the author of

Fireworks MX 2004

Zero to Hero and

Beginning

Dreamweaver MX

2004. He also con-

tributed to The

Macromedia Studio

MX Bible.

charles@charlese

brown.net

aperThin, Inc., has announced the avail-

ability of CommonSpot Content Server

version 4.0, the company’s flagship Web

content management solution. This

major release introduces new scalability options,

added developer and administrator capabilities,

and expanded content creation features. Dozens

of enhancements to existing features are also

introduced in this release.

Version 4.0 builds on an already rich feature

set, which includes 50+ pre-built standard elements. New scala-

bility options in version 4.0 include enhancements to the repli-

cation feature and a static content generation module. By sepa-

rating the process for handling dynamic and static content, a

more scalable, reliable, and higher performance site can be

realized. This new feature also enables easier incorporation of

third party applications, providing support for a broader range

of technologies.

For content contributors, new 4.0 features like comprehensive

spell check, visual difference, and pop-up calendars help authors

create and publish content more accurately. New administrator

tools include

the ability to

easily cus-

tomize the

page creation

interface, the

ability to

restrict the type and size of files that can be uploaded by contrib-

utors, the ability to copy subsite parameters, and support for

international date formats.

www.paperthin.com

Macromedia Flash Player 7
for Linux Now Available

Macromedia has announced the

immediate availability of Macromedia

Flash Player 7 for Linux. This new ver-

sion of Macromedia Flash Player, the

leading rich Internet client, offers

improved performance, security, and

powerful new development capabilities.

Macromedia Flash Player is bundled

with Linux operating systems distrib-

uted by Novell, Red Hat, Sun

Microsystems, and Turbolinux.

“Macromedia is committed to the

Linux platform and wants to make sure

Linux users can experience the proven

effectiveness of Flash technology on their

platform of choice,” said Jeff Whatcott,

vice president of product management,

Macromedia. “Developers can now take

advantage of the breakthrough perform-

ance and advanced capabilities of Flash

Player 7, enabling them to deliver a con-

sistent cross-platform experience.”

Flash Player 7 offers increased per-

formance and ensures a consistent cross-

platform experience. With support for

Cascading Style Sheets (CSS), Flash Player

enables developers to blend HTML and

Flash with consistent formatting. New

support for Simple Object Access

Protocol (SOAP) Web services connectivi-

ty allows developers to create rich

Internet application user interfaces that

handle enterprise data in a service-ori-

ented architecture.

Macromedia Positioned in
the Visionary Quadrant

Macromedia Breeze is positioned in

the “visionary” quadrant in Gartner’s 2004

Magic Quadrant report on Web confer-

encing. With Breeze, Macromedia is deliv-

ering the first rich Web communication

system, allowing organizations to com-

municate, collaborate, and train via a sin-

gle, easy-to-use, integrated solution that

includes everything from live meetings to

on-demand presentations.

Breeze was evaluated based on the

“completeness of vision.”According to

Gartner, enterprises “who desire more than

a slide-sharing event should look to vision-

aries who provide more advanced capabili-

ties.”Gartner defines vendors listed in the

visionary quadrant as having a clear vision

of market direction and are focused on

preparing for that, but they can still

improve in terms of optimizing service

delivery.

The Magic Quadrant is a graphical rep-

resentation of a marketplace at and for a

specific time period. It depicts Gartner's

analysis of how certain vendors measure

against criteria for that marketplace, as

defined by Gartner. Gartner does not

endorse any vendor, product, or service

depicted in the Magic Quadrant, and does

not advise technology

users to select only those

vendors placed in the

“Leaders” quadrant. The

Magic Quadrant is intend-

ed solely as a research tool,

and is not meant to be a

specific guide to action.

12 • MXDJ.COM 6 • 2004

n
e

w
s

NewsFlash

CommonSpot
Content Server 4.0

p

Macromedia Simplifies
Teaching with Technology

The Macromedia Contribute Higher

Education Site License has recently

been released to provide a higher edu-

cation solution enabling greater facul-

ty use of technology in teaching, col-

laboration, and research. This standard-

ized workgroup productivity tool

includes a one-year, department-wide

site license for Macromedia Contribute

2 for use at school and at home, five

perpetual licenses of Studio MX 2004

with Flash Professional, digital learning

assets, and professional development

resources.

Macromedia Contribute 2 is the easi-

est way for individuals and teams to

update, create, and publish Web content

to any HTML Web site. Contribute allows

non-technical faculty and staff to update

Web content and share class lectures,

projects, and research online while main-

taining site standards for style, layout,

and code. Studio MX 2004 with Flash

Professional enables campus Web profes-

sionals to create templates that can be

used by faculty and staff members with

Contribute.

The Macromedia Contribute Higher

Education Site License helps colleges and

departments turn a course Web site into an

interactive teaching resource by putting

content contribution and revision directly in

the hands of faculty. This solution supports

college deans and provosts who want to

motivate faculty members to actively inte-

grate technology into their teaching,

whether to meet program accreditation

requirements, or to demonstrate commit-

ment to teaching excellence and innova-

tion.

Several tutorials are included with

the site license digital assets. Among

these is a tutorial on how to create e-

portfolios with Contribute, and a white

paper on the pedagogical and practical

value of teaching with e-portfolios.

Additional learning resources include

narrated multimedia presentations

explaining why and how e-portfolios

enrich student learning, and sugges-

tions on ways faculty can use e-portfo-

lios to make digital learning experiences

more relevant and engaging for their

students.

The Contribute Education Site License

also includes five copies of Studio MX 2004,

Studio MX 2004 Step-by-Step, and a copy of

the Macromedia Faculty Development Guide.

BookFlash: Web Design
with Macromedia Studio
MX Plus

Web Design with Macromedia Studio

MX 2004, written by Eric Hunley and pub-

lished by Charles River Media, provides

beginning designers with a step-by-step

process for creating a Web site with the

new Macromedia Studio MX 2004.

Structured around a good Web develop-

ment cycle of plan, design, build, test, and

maintain, the book starts by planning the

site and creating a wire frame with

Freehand MX, along with vector graphics

for use in Macromedia Flash MX 2004 and

Fireworks MX 2004. From there it moves to

Flash, where the designer learns how to cre-

ate dynamic content for use on the Web.

Next, Fireworks is used to manipulate

graphics and create Web page designs.

Then the content is brought into

Dreamweaver MX 2004 and the site

launched. Throughout the book, the focus

is not only on how to use each tool, but

how to use them together to create a seam-

less workflow. www.charlesriver.com

MXDJ.COM • 136 • 2004

CSS has been around
for years, but many
Web designers still

do not think it is
ready to be used

extensively because
of the host of browser

rendering
inconsistencies that

exist. However, by
knowing a few CSS

hacks and tricks, you
can learn how to
write code that is

cross-browser
compatible and

allows you to fully
separate your content
from its presentation.

by zoe gillenwater

14 • MXDJ.COM 6 • 2004

6 • 2004 MXDJ.COM • 15

16 • MXDJ.COM 6 • 2004

This article assumes you know what

CSS is and have some idea how to use it to

style Web pages, but is aimed at Web

designers who have not yet taken the leap

of using it as their primary layout method

due to frustrations with browser inconsis-

tencies. It also assumes you know the ben-

efits of CSS-based layout and are eager to

make use of it. Many of the hacks I’ll go

over depend on your document using a

doctype that will put it into browsers’

“standards rendering mode,” so be sure

you are using a proper doctype as well.

(Dreamweaver MX 2004 uses such doc-

types on its HTML and XHTML templates,

so you should be good to go. If in doubt,

read my article in the last issue of MXDJ or

check out the CSS Wiki – http://css-dis-

cuss.incutio.com/?page=DoctypeSwitch –

for information about doctype switching.)

Squashing Bugs
Even the most modern browsers have

bugs in the way they render CSS styling.

Worse still, many people continue to use

older, buggier browsers, so achieving a

consistent cross-browser design can be

frustrating even when you adhere to the

best CSS practices. Luckily, you can use the

browsers’own bugs against them to fix

many of these problems. CSS hacks are

code tricks that take advantage of various

browsers’bugs or shortcomings to hide cer-

tain rules from or feed different rules to

browsers that need special treatment. I’ll

outline some of the most irksome bugs and

how to work around them with CSS hacks.

A word of caution: keep in mind that

not everyone supports the use of hacks.

Some developers argue that the browser

failings we are forced to work around will

never be fixed because our hacks create

the appearance that everything is work-

ing correctly. Hacks can also be danger-

ous because they rely on browser bugs

that may be corrected in future browser

releases, rendering your hacks useless or

perhaps introducing new problems of

their own. However, by keeping our

hacks in the CSS instead of the (X)HTML

markup, we should be able to change or

remove broken hacks in one central file

and update an entire site if it becomes

necessary in the future. If we’re going to

create the best experience for our users,

hacks are a necessary tool in commercial

Web site design – as long as they are

used sparingly and thoughtfully with

periodic testing to make sure they are

still functioning correctly.

Box Model
One of the most common problems

with CSS-based layouts is getting all of

your columns and boxes to line up and fit

together due to Internet Explorer’s (IE)

faulty implementation of the box model.

According to the World Wide Web

Consortium (W3C), the assigned width or

height of an element refers to its content

area only. The padding and borders are

then added to this value to arrive at the

total area of the element that you see on

screen. This means that if you set a div’s

width to 200 pixels with 20 pixels

padding and 2 pixels borders, the total

area it will take up is 200px + 20px (left

padding) + 20px (right padding) + 2px

(left border) + 2px (right border) = 244px.

Unfortunately, all CSS-enabled versions

of Windows IE before IE6 (in standards

mode) use a different box model that

counts the padding and borders of a box

as part of its assigned width. This means

that your div that should take up 244px

on the screen only takes up 200px in

WinIE5.x because it subtracts the

padding and border values from the con-

tent area of the box. You’re left with a box

that looks completely different and has

much less room for content in WinIE5.x

than it does in IE6 and other current

browsers (see Image I for a comparison).

In many cases, the box model prob-

lem can be worked around without any

hacks. For instance, instead of applying

padding to a box to get its content to

move away from the edges, you can

apply the padding to the content inside

the box:

div {

width: 200px;

}

div p {

padding: 20px;

}

But we also wanted 2px borders on

our box. You could choose to ignore the

four pixel difference they would intro-

duce in WinIE5.x – some layouts don’t rely

on such precision. Or, you could nest

another div inside the first one and apply

the borders to the nested div, but this

mucks up your markup. What you really

want is a way to give WinIE5.x a bigger

value than other browsers use, a value

that is equal to the total box width,

including padding and borders, so that it

can happily subtract them without mak-

ing the box too small. Tantek Çelik devel-

oped a box model hack to do just that,

and since then several simplified versions

have followed. My favorite is the Modified

Simplified Box Model Hack (MSBMH)

developed by Edwardson Tan:

div {

width: 200px;

padding: 20px;

border: 2px solid red;

}

* html div {

width: 224px;

w\idth: 200px;

}

The first rule gives the correct width,

padding, and border values to browsers

that correctly implement the box model.

The second rule is seen only by IE

through the use of the Star HTML Hack.

“* html div” tells the browser, “apply this

rule to any div element that is a descen-

dant of an HTML element that is a

descendant of any element” (the asterisk

is the universal selector and means “any

element”). This rule is nonsense: HTML is

not a descendant of any element – it is

the root element – so this rule should not

apply to anything and compliant

browsers should (and do) skip over it.

im
a

g
e

 I

However, IE seems to ignore the universal

selector when it precedes “html,” so this

rule gets applied by IE and IE only.

The first width value in the second

rule is read by all IE versions, giving

WinIE5.x the total on-screen box width

that it uses in its box model.

Unfortunately, IE6 for Windows and IE5

for the Mac also see this 244px value, but

they don’t have a box model problem

and need the correct 200px value. The

second value with the backslash charac-

ter sets things back correctly for these

browsers. Since WinIE5.x cannot under-

stand a rule with a backslash in it, it keeps

the larger 244px value, and all other

browsers including IE6 and MacIE5 get

the correct 200px value, making things

look the same cross-browser.

Keep in mind that IE6 needs to be in

standards-rendering mode for this to

work correctly. Otherwise it will use

WinIE5.x’s incorrect box model, and since

the hack only targets WinIE5.x, IE6 will

not get fixed.

The Star HTML component of the

MSBMH comes in handy quite often: IE

has a host of bugs, and the Star HTML

Hack allows you to feed it different values

when it’s misbehaving.

Three Pixel Gaps
You’ll want to have the Star HTML

Hack at your disposal when you’re using

floats. WinIE, including IE6, inserts an

extra three pixels of space between the

edge of a float and the edge of the fol-

lowing content. If the following content

has a width or height assigned, the three

pixel gap shows up as a space between

the boxes (I’ll call this the Three Pixel

Float Gap; see Image II). If it does not

have a width or height, the boxes seem

to sit next to each other, but the content

within the following box is pushed over

by three pixels for as long as the float

extends beside it, shifting back over to

the edge where it belongs after the end

of the float (Big John [John Gallant] of

positioniseverything.net calls this the

Three Pixel Text Jog; see Image III, with

closeup). Although both are seemingly

minor, the Text Jog is pretty unsightly,

and the Float Gap can throw everything

off in precise layouts, making it impossi-

ble to create a two-column layout with

the float and following content sitting

flush against each other.

To get rid of the Three Pixel Float Gap,

you need to assign the float a negative

margin to pull the following box back

against it. Let’s say we’re using the follow-

ing code to create two columns that sit

flush against each other:

#sidebar {

float: left;

width: 300px;

}

#content {

width: 400px;

margin-left: 300px;

}

We’ve assigned #content a margin-

left exactly the same size as #sidebar’s

width so that they will sit flush against

each other, but in IE the Float Gap shows

up, preventing them from touching. Add

the following hack below your regular

rules to get rid of the gap:

/* hide from MacIE */

* html #sidebar {

margin-right: -3px;

}

* html #content {

margin-left: 0;

}

/* end hide */

We’ve used the Star HTML Hack above

to give values to just IE, then enclosed it

in a Mac Backslash Hack that hides the

values from MacIE due to the backslash in

the comment preceding the rule (a MacIE

bug). Thus, only WinIE (the problem

browser group) sees the hacked values.

What if you do want some space

between your boxes, you just want to kill

the extra three pixels WinIE adds? Just

give WinIE a margin-right that is three

pixels smaller than it should be. Code I is

an example that leaves 10 pixels between

the two boxes.

The examples in Code I have a width

assigned to #content, but when you

leave off this width, the Three Pixel Text

Jog shows up. How can you get rid of the

Text Jog if you have a fluid layout and

can’t assign #content a width? Holly

Bergevin discovered that a height works

just as well, and since IE will (incorrectly)

expand a box’s height to accommodate

its content, you can assign a very small

height and still keep your fluidity! Code II

shows the Holly Hack to kill both the

Float Gap and Text Jog.

The Holly Hack can be used in a vari-

ety of situations when IE is misbehaving.

If IE is doing something strange, check to

see if the offending box has a dimension

assigned. If not, try giving it a height of

1%, and often this will fix things.

Peek-a-Boo Bug
Another IE problem you may run into

while using floats occurs when you have

6 • 2004 MXDJ.COM • 17

im
a

g
e

 I
I

im
a

g
e

 I
II

18 • MXDJ.COM 6 • 2004

a container with a float inside and con-

tent alongside the float. In IE6, the con-

tent following the float may not appear

at all, or appear only partially, until you

scroll down or switch to another window

and switch back. This bug was aptly

named the Peek-a-boo Bug by Big John,

who lists several workarounds for it on

his site. The easiest one to apply was dis-

covered by Matthew Somerville. If you

give the container holding the float a

line-height of any value, it cures the Peek-

a-boo. If assigning the line-height would

cause problems with child elements of

different font sizes, you can use the Holly

Hack on the container for an alternate

quick fix.

Doubled Float-Margin Bug
Since we’re on the subject of floats in

containers, we’d better cover the

Doubled Float-Margin Bug, again a WinIE-

only problem. If you apply a margin to a

float to move it away from the edge of its

container, WinIE doubles that margin. So

the following code produces a 10 pixel

margin on the left of the float in every-

thing but WinIE, which shows a 20 pixel

margin on the left:

The CSS:

#float {

float: left;

width: 100px;

margin: 10px;

}

The (X)HTML:

<div id=”container”>

<div id=”float”>float</div>

</div>

Your reaction to this is probably, “I

know! Use the Star HTML Hack to feed IE a

halved value!”. This would work, but luckily

can be fixed even more easily and cleanly.

Steve Clason discovered that if you apply

“display: inline” to the float it gets rid of the

doubled margin. Since “display: inline” on

floats is ignored by other browsers (floats

are block elements by definition) you

don’t even have to hide this rule from

them via the Star HTML Hack! Easy.

Flash of Unstyled Content
Another IE bug with an equally sim-

ple solution is the Flash of Unstyled

Content, or FOUC, named by Rob

Chandanais of bluerobot.com. A page

afflicted with this bug will show a quick

flash of the page without any styles

before the CSS takes hold. This only

occurs in WinIE on the first page view,

before the CSS is cached, and it happens

when you are using @import to call your

style sheet. Adding just one link or script

element to your document will fix the

problem. The addition of a link element is

an easy and natural fix because most

pages can benefit from an alternate style

sheet, such as a print style sheet:

<head>

<title>My Page</title>

<style type="text/css">@import

"screenstyle.css";</style>

<link rel="stylesheet" type="text/css"

media="print" href="printstyle.css">

</head>

If you decide to add a script to fix the

problem instead, keep in mind that the

script doesn’t have to be in the head to

prevent the FOUC. Placing it inside the

body but before all visual content works

just as well.

Text Inheritance
WinIE5.5 has a problem inheriting the

correct text size into tables, but a simple

rule gets it back on track:

table {

font-size: 1em;

}

This makes sure the font size of the

table displays at the same size as the sur-

rounding text, which it ought to do by

default, so the rule doesn’t need to be

hidden from other browsers.

Netscape Navigator (NN) 4.x also has

major – and less predictable – text inheri-

tance problems. Although you may want to

present NN4.x with an unstyled version of

your pages (using @import instead of <link>

im
a

g
e

 I
V

im
a

g
e

 V

c
o

d
e

 I
c

o
d

e
 II

6 • 2004 MXDJ.COM • 19

to call your style sheet), there may be times

when you want to give it at least some basic

text formatting. Since NN4.x often loses text

properties at seemingly random spots in

your page, it’s best to explicitly set the text

parameters on everything that could possi-

ble need them in NN’s style sheet:

body, div, p, blockquote, ol, ul, dl,

li, dt, dd, td {

font-family: Arial, Helvetica, sans-

serif;

font-size: 12px;

}

Opera has its own text problem when

you set font-size to 100%: it computes it

to be one pixel smaller than it should be.

Using 100.01% instead of 100% fixes this.

Horizontal Centering
To center your entire layout in the

browser window, use the following CSS:

body {

min-width: 700px;

text-align: center;

}

#wrapper {

width: 700px;

margin: 0 auto;

text-align: left;

}

Setting the left and right margins to

auto centers #wrapper in the window

because the margins are set to equal val-

ues. Since WinIE5.x does not recognize

this technique, add “text-align: center” to

the main div’s container, in this case

“body,” to achieve the centering in that

browser (this property won’t work in

other browsers because it’s only sup-

posed to center inline content, not blocks,

but WinIE5.x ignores that little detail).

Set a min-width on the body equal to

the width of the centered box to avoid

problems in Gecko-based browsers. If you

don’t set this min-width, when you size

your window below the size of the cen-

tered box, its left side will get cut off

without the ability to scroll over to the

left to see the cut-off content (see Image

IV). This is because when the window is

too small, the auto margins must get set

to negative values, thus extending the

box equally off both sides of its contain-

ing block (in this case, the body).

Containing Floats
Keep in mind while using floats to cre-

ate columnar layouts that floats, not just

absolutely positioned boxes, are removed

from the flow of the document. This

means that a parent box doesn’t know

the float is there and thus will not expand

to hold the child float. This may seem

illogical at first, but think about when you

are not using floats for columns, but for

images placed in paragraphs – the most

traditional use of floats. In this case, you

want all the text to flow around the image

– not just the text of the first paragraph

where the image is placed, but all subse-

quent paragraphs that encounter the

float as well. If the float made its contain-

er, a paragraph, expand to hold it, the

next paragraph wouldn’t start until the

image ended, leaving a potentially large

gap (see Image V). So, floats naturally

stick out of their parent elements instead.

But don’t worry – there is a way to

overcome this behavior when your layout

calls for it! All you need is a block-level ele-

ment, set to clear the float, placed within

the container but after the floated ele-

ment. This forces the container to expand

down around the element beneath the

float, enclosing the float in the process.

The CSS:

br.clear {

clear:both;

height:0;

margin:0;

font-size: 1px;

line-height: 0;

}

The HTML:

<div id="container">

<div id="float">float</div>

<br class="clear">

</div>

Another easy way to contain a float is

to float its parent: a floated parent auto-

matically expands to hold children floats.

While we’re on the subject of floats,

one caution: make sure you assign your

floats an explicit width, as required by the

CSS 2.0 spec. Although most browsers are

lax about this (so much so that the

requirement’s been dropped from the

upcoming 2.1 spec), MacIE takes floats

that don’t have a width and expands

them to fill up their entire container. This

is a problem if you are using floated s

to create a horizontal nav bar, for instance.

In this particular case, you can float the

<a>s inside the s to get them to sit

beside each other in MacIE, but most of

the time you have to bite the bullet and

give all floats a width to keep MacIE from

expanding floats to 100%.

Conclusion
I wish I could tell you that the bugs

I’ve described are the only ones you will

run into and that the hacks I’ve outlined

will cure all your CSS ills, but I can’t – I’d

be lying. Unfortunately, there are quite a

few other bugs I haven’t touched on, and

new bugs will certainly continue to pop

up as browsers evolve and Web develop-

ers push the limits of CSS and (X)HTML.

But, I can tell you that you’re now armed

against the most common CSS bugs and

ready to create your first all CSS, cross-

browser layout without fear.

Zoe Gillenwater is a Web designer at the

University of North Carolina at Chapel

Hill with a passion for standards-based

development. She also keeps busy with

graphic design and multimedia projects.

Zoe is an active participant in the css-

discuss community and is one of those

who believes CSS-based layout is ready

for prime time. zoe@pixelsurge.com

#sidebar {
float: left;
width: 300px;
}
#content {
width: 400px;
margin-left: 310px;
}
/* hide from MacIE */
* html #sidebar {
margin-right: 7px;
}
* html #content {
margin-left: 0;
}
/* end hide */

#sidebar {
float: left;
width: 300px;
}
#content {
margin-left: 300px;
}
/* hide from MacIE */
* html #sidebar {

margin-right: -3px;
}
* html #content {
height: 1%;
margin-left: 0;
}
/* end hide */

20 • MXDJ.COM 6 • 2004

s a developer who often finds

myself with less time to devel-

op projects than I would per-

haps like, the lure of purchasing a plug-in

that saves time on database creation is

more than a little tempting. This is what

the NeXTensio2 plug-in offers for PHP-

driven systems that use Dreamweaver.

NeXTensio2 (note that it is not just

developed for the experienced program-

mer, but also for the novice) enables the

developer, in next to no time, to provide

a database system that includes the

access screens for the end users.

InterAKT, the company that created

NeXTensio2, has taken into account the

needs not only of a developer creating a

suitable database on a tight timescale,

but also of the user that has to utilize the

completed system. NeXTensio2 aims to

provide a full list of tools that offers the

developer a fully conceived structure via

a behavior interface. The NeXTensio2 sys-

tem should also save vital planning time,

allowing the developer to concentrate on

the content issues of the system. By using

precoded behaviors, this shortened

development cycle should improve turn-

around time and give the client a clear

sight of the intended goal from early on.

InterAKT admits that much of what

NeXTensio2 is capable of is possible for

an experienced programmer who has the

time, but that is not the aim of the prod-

uct – NeXTensio2 is a labor-saving alter-

native. It provides the end-user interface

that is essential, which can be tailored

during production to take into account

most standard data input and extraction

needs. This also extends to master/detail

list management enabling database link-

ing, expanding the capabilities of the sys-

tem.

This is not InterAKT’s first product.

NeXTensio2 appears to have been devel-

oped to answer the needs of their previ-

ous systems, including their tNG transac-

tion system, from which NeXTensio2 is

partially developed. This development

and extension into an InterAKT family of

products results in a whole transaction

data management system in PHP. All this

has been designed with speed and effi-

ciency in mind, aiming to allow develop-

ers to use NeXTensio2 to create powerful

databases quickly.

The user interface of NeXTensio2 is a

series of entry boxes running with a wiz-

ard-style interface, which guide you

through the process of creation of the list

information and end-user interface (see

Image I). While I do not prefer wizard-

styled interfaces, this one fullfilled my

expectations and was flexible in its exe-

cution. The acceptable data types cover

most of the types needed by the typical

system; if the required database system is

more specialized, then it’s likely that it

would be developed from scratch, which

is outside of the program’s intended role.

The layout of the input screens is clear

and concise, although a little difficult to

grasp at first, owing to the lack of a clear

overview of all the table field informa-

tion. An impressive feature is the open-

ended way in which you can use this sys-

tem, implementing as much or as little of

it as desired. The developer is free to pick

and choose, although the creation of

specialized additional behaviors for inte-

gration into the existing NeXTensio2

code would obviously be more difficult

than for a bespoke system.

The system end-user entry behaviors

are particularly handy. They enable the

creation of a clear and separate data-

entry style interface for general usage

and the list management system to be

used by authorized users, via the form

creation behavior (see Images II and III).

The ability to create a multiple-user entry

system is attractive when displaying the

final database system to a client, since it

would save the client time and money in

transferring files to their new system. This

is supported by the standard safeguard

features for data entry with validation for

entry fields. It would be nice to see some

development made in further segregat-

ing access between standard data entry

screens and the more powerful list man-

agement areas. This could be via an auto-

matic password facility or similar for page

access – the “check credentials” function

does not extend far enough for my liking.

NeXTensio2 extends from InterAKT’s

product review

NeXTensio2
Create databases in next to no time

reviewed by russell stearman

a

im
a

g
e

 I

tNG (transaction Engine) system, making this

family of packages very useful for a small- to

medium-size retail company. A user interface

that is clear and easy, which takes no more than

a few minutes to create, makes NeXTensio2 pow-

erful indeed.

InterAKT is well aware of the needs of their

clients and developed this tool with them in

mind, so it fulfills many requirements. The doc-

umentation is well presented and easy to

digest, and the company is very forthcoming

and helpful. This lends to an image of the com-

pany as dependable and loyal to their cus-

tomers. They are aware of the current version

limitations and already have plans for the next

update.

A welcome feature would be to enable fur-

ther customization of the PHP pages created,

which is presently handled by the KTML program

included in the package. This is helpful, although

the next KTML release will be a separate product.

Conclusion
NeXTensio2 is a very useful tool for creating

small- to mid-scale database systems whose main

lure is the shortened development cycle. This

makes the product suitable for creating smaller

test and display systems for larger specialized

projects. It is a very handy plug-in to have around

for the database-oriented developer. The accessi-

bility for the nonprogrammer is also good,

although the level of database programming

knowledge needed is still slightly above that of

the average nonprogrammer. With NeXTensio2,

you can create powerful and versatile transaction

systems to suit a multitude of business needs. Visit

www.interakt.ro/products/NeXTensio to learn

more.

6 • 2004 MXDJ.COM • 21

im
a

g
e

 I
II

1-58450-316-5 $49.95

ONE PUBLISHER

ALL THE SOLUTIONS

1-58450-315-7 $41.95

1-58450-309-2 $49.95

1-58450-301-7 $49.95

1-58450-283-5 $49.95

Titles also available at Amazon,
Borders, Barnes & Noble,
and other fine retailers.

800 382 8505

C H A R L E S R I V E R.C O M

b

im
a

g
e

 I
I

customtools

22 • MXDJ.COM 6 • 2004

 I first laid my hands on Flash MX 2004, the thing that

really made me say “Wow!” was the extensibility layer. If

you are not familiar with it, this incorporates a new

language, JavaScript Flash or JSFL, that allows you to do

whole new things with the Flash IDE. by keith peters

when

6 • 2004 MXDJ.COM • 23

24 • MXDJ.COM 6 • 2004

The extensibility layer covers several

new sections of the IDE. There are com-

mands, which are relatively linear pro-

grams in JSFL. You run a command and

Flash steps through the code and does

whatever you’ve told it to do. Then there

are custom tools that you can add to the

toolbar to make any shape or drawing

function that you can describe in code.

Behaviors are like ActionScript templates

that can be applied to any symbol.

Timeline effects are essentially canned

tweens created in JSFL, which again can

be applied to any shape or object on

stage. WindowSWFs are custom panels

that you can open like any of the standard

panels in the IDE. These make use of the

new ActionScript command, MMExecute,

to run JSFL commands on the current doc-

ument being edited. Finally, JSFL scripts

can be run from the command line or by

other programs, making it possible to

automate Flash functions or create whole

new front ends for Flash.

A handful of people have now

jumped onto the extensibility bandwag-

on. For the most part, people seem to be

making commands and WindowSWFs,

and some very useful ones at that. Some

have also played around with command-

line execution. The usefulness of

Behaviors and Timeline Effects is still up

in the air. I’ve seen very little being done

in these areas at all.

What really surprised me, though, was

the total absence of tools being created. I

thought this was one area that would

really take off. My guess is that the whole

process of creating tools is fairly compli-

cated and there is really no documenta-

tion on how to do it. My hope is that this

article will make the process a bit more

clear, and inspire a few people to begin

making their own and sharing them.

The Structure of a Tool
Unlike commands and MMExecute

statements in WindowSWFs, which exe-

cute in a fairly linear fashion and can be

programmed like any simple script, tools

take a fair bit of setup and require a spe-

cific structure. If you don’t get it just right,

not only will your tool not work, but

chances are it won’t even show up on the

toolbar (see Image I).

To begin with, a tool generally con-

sists of a JSFL file, and a PNG file to serve

as its icon on the toolbar. It may also

include an XML file for specifying options

via the Properties panel.

Here is the general outline for creat-

ing a tool:

1. Create the icon file.

2. If you will be using options, create the

XML file.

3. Create the JSFL file.

4. Add the tool to the toolbar.

5. Test and debug.

6. Reload the toolbar.

7. Repeat steps 5 and 6 until it’s done.

The Invisible Button Tool
As an example, we will be creating a

tool that allows you to draw an invisible

button on the stage. Invisible buttons are

buttons that have no graphics except in

the hit state. They are useful as “hot

spots” or for making other static graphics

function as buttons. They don’t have any

graphical representation in the final

movie, but in the authoring environment

appear as a translucent blue shape. I got

sick of creating and resizing these but-

tons by hand all the time and realized a

tool would be very useful for this.

Creating the Icon
You just need a 16 x 15 pixel PNG file

to serve as an icon. This can be created in

Fireworks, Photoshop, or any other

graphics application. The easiest way is to

load in the existing PolyStar.png file and

edit it. You’ll find that in the Tools directo-

ry in your Flash Configuration directory.

In Windows, that’s generally

c:\Documents and Settings\<user

name>\Local Settings\Application

Data\Macromedia\Flash MX

2004\en\Configuration\Tools. On a Mac,

it’s <hard disk>/Users/<user

name>/Library/Application

Support/Macromedia/Flash MX

2004/en/Configuration/Tools.

Make an icon that will represent what

the tool is. I just made a blue rectangle

the same shade as the invisible buttons

appear (see Images II and III). Save the

PNG in the Tools directory with the name

“InvisibleButton.png”.

We won’t be using any options at first,

so don’t worry about the XML file just yet.

JSFL Program
Now comes the big part – creating

the JavaScript Flash program that makes

the tool work.

Tools are actually event-driven pro-

grams that just sit there and wait for

something to happen, such as a mouse

click or key press. As such, the only code

in a tool should be in predefined event

handlers or additional functions that are

used by them. There should be no “loose

code” in a tool’s JSFL file. Here are the

standard tool event handlers, with a brief

description of each:

• configureTool: This is run each time

Flash starts up or tools are reloaded.

Flash searches for this function in

every JSFL file in the Tools directory

and executes it. It needs to contain a

few standard lines of code to make the

tool available to be added to the tool-

bar – generally nothing else.

• activate: This is called whenever the

tool is selected on the toolbar. Here is

where you initialize various aspects of

the tool, which usually includes grab-

bing a reference to the active tool, and

getting any default options from the

options panel, if one has been set up.

• deactivate: This is called whenever the

tool is active, and another tool is

selected. Although generally not much

is needed here, you can use it to do

any cleanup.

• notifySettingsChanged: This handler is

called when a user chooses the

options for a tool from the Property

Inspector, changes some settings, and

clicks “OK” in that dialog. The code in

this function will often be quite similar

to the activate function, as both need

to get and process the options data.

• setCursor: Often Flash or the operating

system needs to take control of the

cursor and change it to a particular

shape – hourglass, arrow, etc. When

they are done with it, this function will

be called, allowing you to change the

cursor to one of several predefined

shapes.

• keyUp: Fires whenever a key is

released.

• keyDown: Fires whenever a key is

pressed.

• mouseUp: Fires whenever a mouse

button is released.

• mouseDown: Fires whenever a mouse

button is pressed.

• mouseMove: Fires each time the

mouse is moved.

• mouseDblClk: Fires whenever the

mouse is clicked twice within a certain

im
a

g
e

 I

short period. Note that the first click

will still generate a mouseDown and

mouseUp event.

To create a tool, you just need to

define some or all of these functions in a

text file and save it as a .jsfl file in your

Tools directory. Minimally, you need a

configureTool handler, so let’s see what

needs to be in there.

configureTool
As mentioned, this function needs to

define certain properties so that it can be

seen by the program and available to

place on the toolbar. Code I shows the

configureTool function for the invisible

button tool (Code listings are available at

www.sys-con.com/mx/sourcec.cfm).

A little note on the JSFL Document

Object Model: JSFL has described most of

the Flash authoring environment and most

aspects of a Flash movie in a series of

objects. These are arranged in a logical

structure to represent how things are actu-

ally arranged. For example, the “fl” object

(you can also call it “flash”) is the root of this

model and represents the entire program.

It contains an array called “documents”,

with one element for each Flash document

that is currently open. Each document has

an array called “timelines”, equivalent to

scenes. From there, each timeline has lay-

ers, and each layer has frames. Anything on

the stage in a particular frame is in that

frame’s “elements” array.

The fl object also contains a “tools”

object, which has an “activeTool”property.

This always points to the tool that is current-

ly being used or configured. Here we grab a

reference to that and store it in curr_toolObj.

Then we run several “set”functions on it.

These tell Flash what to use for the tool’s

icon, menu string, tool name and tool tip.

Here is also where you can set the XML file

to be used for the tool’s options, if you have

made one. I’ve commented that one out as

we’re not using it at this point.

setCursor
As we don’t have any options and

don’t need any other setup, we can skip

activate, deactivate, and

notifySettingsChanged for now. Most of

our work will be in the mouse handlers.

But first, let’s tell Flash that we want a

crosshair cursor whenever the tool is

active. This will let the user know that

he’s supposed to draw some-

thing. The following code shows

the setCursor function.

function setCursor(){

fl.tools.setCursor(0);

}

The tools object has its own

setCursor function. This is easy

to get confused with the

setCursor event handler.

fl.tools.setCursor() takes a single

argument, a number from 0 to

7. These will create the follow-

ing cursor shapes:

• 0: Crosshair

• 1: Black arrow.

• 2: White arrow.

• 3: Four-way arrow.

• 4: Two-way arrow (horizon-

tal).

• 5: Two-way arrow (vertical).

• 6: An “X” cursor.

• 7: Hand cursor.

mouseDown
The next event we want to

handle is the user pressing the

mouse button down. This is our signal

that he wants to draw something starting

at the point where the mouse was

clicked. We’ll need to find out where that

point is, and begin drawing. The follow-

ing is the mouseDown code.

function mouseDown(){

startPoint = fl.tools.penDownLoc;

fl.drawingLayer.beginDraw();

}

The tools object has a couple of prop-

erties relating to the mouse position,

penLoc and penDownLoc. penLoc holds

a reference to the current position of the

mouse, and penDownLoc holds the posi-

tion of the mouse the last time the

mouse was clicked. Both are objects con-

taining x and y values.

Here we are storing the penDownLoc

coordinates in a variable called startPoint.

This variable will be available to any func-

tion in the tool, much as a timeline vari-

able in ActionScript. Also similar to AS, had

we declared it using the keyword “var”, the

variable would be local to the

mouseDown function and not be avail-

able when we needed it in other functions.

Next we see another object,

“drawingLayer”. If you open up Flash and

use any of the built in drawing tools, you’ll

see that while you are drawing with them,

you’ll get a preview of what you are draw-

ing using a thin black line. When you

release the mouse, the shape is drawn

with whatever stroke and fill attributes

are set. That temporary preview drawing

6 • 2004 MXDJ.COM • 25

im
a

g
e

 I
I

im
a

g
e

 I
II

26 • MXDJ.COM 6 • 2004

occurs on the drawingLayer, and you now

have full access to it.

All drawingLayer activity needs to

commence with a call to its beginDraw()

function, and when you are done, you

should exit out of drawing mode with

endDraw(). These two calls usually occur

in mouseDown and mouseUp respective-

ly. All the drawing itself generally hap-

pens in the mouseMove function.

mouseMove
We have the point where the mouse went

down, and we’ve entered drawing mode. Each

time the user moves his mouse, we want to

give him a preview of what he will see if he

releases the mouse button. We’ll do this in the

mouseMove function, shown in Code II.

First, realize that mouseMove will be

fired every time the mouse is moved,

regardless of whether the user has pressed

the mouse button or not. So we check

another tools property, “mouseIsDown”to

make sure that the user is actually trying to

draw something. It would be more efficient

to create the drawing code in a separate

function, such as “drawPreview”. You could

then assign this function to mouseMove

within the mouseDown function like so:

mouseMove = drawPreview;

and delete it in mouseUp:

delete mouseMove;

But for simplicity, we will leave it as is.

In addition to bracketing the entire

drawing cycle with beginDraw() and

endDraw(), we need to surround each

individual preview-drawing session with

beginFrame() and endFrame(). This clears

the drawingLayer of all previous material

and sets it up to receive additional com-

mands. The usual sequence is:

mouseDown:

beginDraw

mouseMove:

beginFrame

drawing actions

endFrame

mouseUp:

endDraw

If you notice flickering or leftover arti-

facts on the screen, you are not following

this sequence. There’s no reason that

drawing to the drawingLayer in your cus-

tom tools shouldn’t be as smooth as in

the built in tools.

In the drawingLayer frame, we grab a

local reference to fl.tools.penLoc, and

issue a series of moveTo’s and lineTo’s.

The drawingLayer line drawing functions

work identically to the ActionScript draw-

ing API commands. This simply draws a

rectangle from where the mouse was

clicked to its current location.

mouseUp
Hold on to your hat, here’s where the

real action starts. The user is happy with

the preview we’ve given him, and wants an

invisible button in that exact spot. Rather

than simply drawing a shape, we need to

create a button in the library, put it on

stage, and position and size it to where the

user asked for it. Code III

shows the code. We’ll walk

through it step by step to

see what’s happening.

The first few lines end

drawing mode on the

drawingLayer, grab a refer-

ence to the current mouse

location and compute the

width and height that the

button should be.

Next, we grab a refer-

ence to the currently active

document in the authoring environment.

Although you can access any document

through the documents array, usually

you only want the current document,

which is always available by calling

fl.getDocumentDOM().

Once we have the document, we get a

reference to its library. We use the

“itemExists”method to see if the library con-

tains an item called “invisButton”. If not, we

create it with the “addNewItem”method. We

specify “button”as the type of item to add,

and “invisButton”as its name. You can also

add videos, graphics, movie clips, bitmaps,

or even folders with this method.

Now we have a blank button in the

library. We begin editing it with the

“editItem”method. This is equivalent to dou-

ble clicking on the item in the library. If we

were to end the code right here, the user

would actually be left with the button open

for editing in the authoring environment.

As we now need to deal with the frames

of the button, and as frames are part of a

layer, which is part of a timeline, we first

need a reference to the current timeline of

the current document. We get that with the

“getTimeline”method of the document.

A newly created button has only one

frame – the “Up” frame. Remember that

an invisible button only has content in its

“Hit” frame, which is frame 3 (starting

with 0). So we need to insert three more

frames, and make frame 3 the current

frame, and a keyframe. These three lines

take care of exactly that:

curr_tl.insertFrames(3);

curr_tl.currentFrame = 3;

curr_tl.convertToBlankKeyframes(3);

It takes a bit of practice to get the

hang of manipulating frames and layers

and elements in JSFL. It helps if you think

beforehand what you would do by hand,

list out those steps, and then find the

functions that do those in JSFL.

Now we are sitting inside the hit

frame, ready to add a graphic. Rather

than drawing a rectangle the exact size

we need it, however, we’ll just draw a

generic 100 x 100 pixel square, and resize

it whenever we need to use it. This allows

us to use the same button symbol for

multiple instances of invisible buttons.

We use the addNewRectangle

method of the document object to draw

a rectangle on the stage. The first argu-

ment to this method is an object contain-

ing top, left, bottom, and right coordi-

nates of the rectangle to be drawn. We’ve

set these to 0, 0, 100, and 100 to create

our 100 x 100 rectangle. The second

argument is the roundness of the corners

im
a

g
e

 I
V

im
a

g
e

 V

of the rectangle. We’ll use zero to have

sharp corners.

The next two arguments can be used

to suppress the fill and/or stroke of the

shape drawn. We definitely want the fill,

so we leave that false. Specifying true as

the last argument suppresses the stroke,

for which we have no use.

Having finished our work here, we

exit edit mode, which puts us back on

the main timeline. Note that there is

room for improvement here. If the user

was not on the main timeline to begin

with, we really shouldn’t return him

there. A more complete strategy would

include taking note of the current time-

line, layer, and frame the user was on,

and returning him there when we were

done. For the sake of simplicity I’ll leave

that as an exercise for you to practice.

At this point, we’ve either skipped

over the if block because the invisButton

symbol existed, or we’ve created it. Thus,

the first time someone uses the tool, the

symbol will be created. Successive uses

will reuse the existing symbol.

Next we add the button to the docu-

ment with, obviously enough,

“addItemToDocument”. The first argu-

ment of this method is the point where

you want the item placed. What do you

know? We already have that stored in the

variable startPoint! The next argument is

simply which item to add.

Now we need to size the button to what

the user drew. We’ve stored the size in the

variables, w and h. Knowing that the button

starts out at 100 x 100, we can scale it up or

down to the correct size by using

“scaleSelection”. You’ll notice that many of the

document methods operate on whatever is

currently selected, hence “scaleSelection”,

“moveSelectionBy”. Luckily, when we add an

item to a document, it is automatically the

only thing on stage selected.

Unlike _xscale and _yscale in

ActionScript, which use percentages to

scale, scaleSelection uses fractions. Thus a

value of 1 is 100%. If we divide w and h by

100, we’ll get the right amount to scale.

For example, if the user drew a shape

233 pixels wide, w will equal 233 – which

divided by 100 is 2.33. So Flash will scale

the 100 pixel button 2.33 times its width,

making it 233 pixels.

One minor problem here is that the

point you specified in

addItemToDocument is used as the cen-

ter point of the new button, not its top

left corner or even registration point. So

the button will not be centered on the

point where the user originally clicked.

We simply need to move the button by

half its width and half its height and it

should be properly positioned. We do

that with moveSelectionBy. This takes an

point object containing x and y values, so

we have to encode our w and h variables

into an object before passing them to the

function, as so:

{x:w/2, y:h/2}

Add the Button to
the Toolbar

We’ve finished our first round of cod-

ing and are ready to add the button to

the tool bar. Save the JSFL file as

“InvisibleButton.jsfl” in your Tools directo-

ry, making sure your icon png file is there

too (see Image IV).

Start a new Flash movie and open the

Customize Tools Panel (Edit->Customize

Tools Panel…). You’ll see a dialog show-

ing all the existing tools on your toolbar,

and any tools that are available to add.

The Invisible Button Tool should appear

in the list alongside the icon you created.

If it is not there, there is a problem in the

configureTool function. If Flash cannot

find or cannot successfully execute that

function, or if it doesn’t have the neces-

sary code telling Flash its name, etc., it

won’t be listed.

Click on the little toolbar representa-

tion on the left, on the spot where you’d

like to put your tool. You can remove the

existing tool and replace it with your

own, or simply add it to the list.

Click OK and your tool should now be

on the toolbar. If it is not, there is a major

error in your code. In ActionScript, certain

bugs will cause run time problems.

Others will prevent the movie from being

compiled at all. Similarly in JSFL, some

errors will throw JavaScript errors when

you try to run your tool, more serious

errors will prevent the tool from appear-

ing at all.

Test and Debug
In a perfect world, the tool would be

sitting there on the toolbar and when

you went to use it, it would work exactly

as you planned. In reality, if something

can go wrong, it will. If your tool doesn’t

show up on the toolbar, or you run into

some problem with it while testing, you

already know you need to dive into the

code and fix it. Then what?

Reload the Toolbar
You need to reload the toolbar to

make the latest version the active one (or

perhaps to make it show up at all). You

have a few choices. You can restart Flash.

A bit extreme. You can go back into the

Customize Tools Panel, remove and re-

add the tool. Still a bit much. Fortunately

there’s an easier method, using JSFL itself.

The fl object has a method called

“reloadTools” for this exact purpose. We

just need a way to execute this method

whenever we need it, and that’s what

commands are for.

Create a new JSFL file containing a

single line:

fl.reloadTools();

Save this in the Commands directory

in the Flash Configuration directory. This

will now appear on the Commands

menu, and you can reload the toolbar

each time you change your tool JSFL file.

Adding Options
The Invisible Button Tool is useful, yet

pretty simple (see Images V and VI). You

draw on the stage and it puts a button

there. There is no real need to specify any

options in it. But in order to demonstrate

how options are used, we’ll add in an

option to allow the user to specify the

library name of the button.

The first thing we need to do is

uncomment the line in configureTool that

28 • MXDJ.COM 6 • 2004

im
a

g
e

 V
I

xile written & illustrated by louis f. cuffari 7

6 • 2004 MXDJ.COM • 29

calls setOptionFile. This will set the

option file to an xml file named

“InvisibleButton.xml”.

Naturally, we need to create this file

next. It will go right in the Tools folder

along with the other tool assets. The con-

tents of this file are shown below.

<properties>

<property name="Library Name" vari-

able="libName"

defaultValue="invisButton"

type="String"/>

</properties>

The root node is <properties>. Each

option you want to define goes in its own

<property> node. You define the option

in the node’s attributes. All options will

contain name, variable, defaultValue and

type attributes. The name is the label

shown in the Tool Settings dialog. The

variable is the identifier used to pass the

value back to the tool JSFL file.

Type can be “Number” (integer),

“Double” (floating point number),

“Boolean”, “String”, “Strings”, or “Color”.

Number, Double, and String will present

the user with a text field. Boolean will

create a checkbox, Strings will create a

drop-down list, and Color will create a

color chooser.

The defaultValue is the value with

which the tool will be initialized.

Depending on the type, other attrib-

utes may be available. The numeric types

have max and min attributes, and Strings

has a list attribute, which is a comma-sep-

arated list of values in the form,

list=“Dog,Cat,Mouse”.

If you reload tools now, and select the

Invisible Button tool, you’ll notice there is

an options button in the Property

Inspector. Click that and you’ll get the

Tool Settings dialog allowing you to

change the setting for Library Name. Of

course, we need to program something

into the JSFL to retrieve this value and

use it when it creates a button.

We need to retrieve the value at two

points. First, when the tool is activated,

and then any time the settings are

changed. Now you see the use for the

activate and notifySettingsChanged

event handlers. As mentioned earlier,

these two functions are often quite simi-

lar. In our case they are exactly the same

and are given in the following code.

function activate(){

libName =

fl.tools.activeTool.libName;

}

function notifySettingsChanged(){

libName =

fl.tools.activeTool.libName;

}

As you can see, the option is passed

in via its variable name, which becomes a

property of fl.tools.activeTool. We simply

grab this value when we activate this tool

and update it whenever the settings are

changed.

The variable libName will now initially

contain the default value, “invisButton”. If

the user ever changes it, libName will be

updated automatically. We simply need

to substitute libName everywhere we

previously hardcoded “invisButton”. This

only affects the mouseUp function. The

updated version of that function is in

Code IV.

Save that, reload tools, and test it out.

Initially, the tool should create a symbol

named “invisButton” in the library.

Additional uses of the tool will continue

to use the same symbol. However, if you

click on the Options button and change

the Library Name, the next time the tool

is used, a new symbol with that name will

be created.

Conclusion
We’ve just barely scratched the sur-

face here with custom tools. In addition

to the possible improvements noted in

the article, there are ways to make tools

snap-to-grid, and constrain them when

you hold down the shift key while draw-

ing. There is also a nasty “but” that arises

if you try to draw inside a symbol that has

been translated, scaled, or rotated. And

beyond just fixing things, there are many

powerful things you can build into your

tools that we didn’t even touch.

In Chapter 3 of the book Extending

Flash MX 2004, Complete Guide and

Reference to JavaScript Flash, published

by Friends of ED, I cover custom tools

much more exhaustively, and handle all

the points brought up above. And before

you accuse me of a cheap book plug, I’ll

also throw in that the entire chapter is

available as a free download at

www.flashextensibility.com.

At any rate, I hope that this article has

shed a little light on how to make tools

and given a few people a little nudge into

giving them a shot.

30 • MXDJ.COM 6 • 2004

 by charles e. brown

CALL
 IN

THE
SPECIALIST

 i have to begin

this month’s article with a confession. Each year,

because of my articles and books, software

publishers send me piles of free software with

the hope that I will do an article about their

product. I use the software and then, at some

point, start feeling guilty. So, in that light, this is

my periodic attempt at assuaging my

conscience; hopefully, I’ll give you some

good advice.

Fireworks MX is a great program that

can do a lot. But in today’s “job must be

done by yesterday” world, the concept of

object-oriented programming is here to

stay. The whole philosophy behind OOP

is that you use a prebuilt solution and

just plug in the information. This saves

hours of potential trial-and-error devel-

opment.

The software tools I discuss here are

both relatively inexpensive and compati-

ble (directly or indirectly) with the MX

environment.

Alien Skin Software
This company has had a strong asso-

ciation with Fireworks for quite some

time now. As a matter of fact, a “lite” ver-

sion of its products, Eye Candy 4000 and

Alien Skin Splat, ships with Fireworks MX

2004. These are filter programs that will

allow you to create special effects quickly.

The full version of Eye Candy 4000

comes with 23 easy-to-use filters. As an

example, you could apply the melt filter

to a photograph and end up with some-

thing like Image I. This could be the easy

road to becoming the next Salvador Dali

in melting time.

How many hours have you spent try-

ing to get that glass button

effect? The glass filter will

give you the effect shown

in Image II, among others,

quickly and easily. The

interface will allow you to

change color, shading,

transparency, etc.

The full version of

the Splat program will give you

some great frame

and edging

effects.

As an example, the cameo shown in Image

III was created with just a few clicks.

I could have achieved the same effect

by using a masking technique. However,

this image was created within seconds

with just a few simple clicks.

Xenofex 2 offers 14 additional fil-

ters for such exotic effects as electrici-

ty, smoke, crumpled paper, jigsaw puz-

zle, etc.

Image Doctor will allow you to

repair damaged images by removing

scratches, spots, and various compres-

sion errors.

Why reinvent the wheel? It took me

a considerable amount of time to recre-

ate what these filters did with a few

simple keystrokes in an easy-to-use

interface.

You can purchase these filters, and down-

load demo versions, at www.alienskin.com.

They also have special package pricing.

Auto FX
This series of filters are available in

two versions: stand alone and plug-in.

However, as of this writing, the plug-in

versions are not available directly for

Fireworks. The plug-in versions are avail-

able only for Photoshop, Corel Photo

Paint, and Jasc Paint Shop Pro.

I happen to be a user of Paint Shop

Pro, and as a result I was able to install

these filters as a plug-in. Once I did that, I

was able to access the plug-ins with

Fireworks.

These filter packages offer some very

sophisticated effects. As an example, the

Mystical Lighting package gives you ways

to play with an image’s lighting. Image IV

offers an example.

As an experiment, I found the graph-

ic in Image IV on their Web site. I was

able to reproduce the results within

about 15 minutes. Unfortunately, space

does not permit me to show you many

of the interesting variations I was able to

create.

As a designer, I’m always looking for

interesting things to do with text. One of

the filters of the Dreamsuite Series of fil-

ters will allow you to turn ordinary text

into something like Image V.

The Mystical Tint package will allow

you to work some magic with the image’s

colors. This is shown in Image VI.

Again, I was able to create a number

of variations that I do not have room to

32 • MXDJ.COM 6 • 2004

image I

image II

image III

im
a

g
e

 I
V

reproduce here. Experimenting with the

interface of these filter packages opened

up a number of fascinating possibilities.

Demo versions, a number of

examples, and pricing are

available at www.autofx.com.

As I stated at the outset, you

can use this as a freestanding

program and then export into

Fireworks.

You will be amazed.

WildForm
Not all the samples were for

Fireworks. As you may know, there are a

number of programs to augment Flash

MX. Among the best programs I have

seen is Wildfx. This simple, and inex-

pensive, package will give you an

unbelievable 400 text effects.

You open it up, type the text,

pick the effect, and the job is

done.

The interface is

shown in Image VII.

I can easily export

the SWF file and then

incorporate it into a Flash

movie. If 400 text effects

are not enough, you can

get a low cost supplemen-

tal package that will give

you an additional 200 effects.

If you want to put a Flash

movie together, using multiple SWF

files, quickly, you can use

the companion prod-

uct called Linx.

This will

allow you

to easily

take SWF

files and

just drop-

ping them onto a

timeline.

The interface is

shown in Image VIII.

Please remember that I am not

using Linx as a substitute for Flash

MX. However, it helped me speed

up some of the more routine tasks.

I am finding the Wildform pro-

grams increasingly important to help

speed up my workflow. Information

about these programs can be found

at www.wildform.com.

Conclusion
This is only a small sampling of the

third-party market building around

Macromedia’s MX line. Each of these pro-

grams can speed up the workflow

process by offering specialized function-

ality and reducing graphics process

down to a few simple keystrokes.

Are they worth the investment?

Only you can decide that. However, in

my practice, each of these programs has

saved me hours and, in one case, days of

work. This translates out to profitability

that could outweigh the initial cost.

Give the demos a try. I don’t think you

will be disappointed.

6 • 2004 MXDJ.COM • 33

im
a

g
e

 V
II

I

im
a

g
e

 V

im
a

g
e

 V
II

im
a

g
e

 V
I

Charles E. Brown

is the author of

Fireworks MX

2004 Zero to Hero

and Beginning

Dreamweaver MX

2004. He also

contributed to The

Macromedia

Studio MX Bible.

charles@charlese

brown.net

the
tricks

to
tracing

Many casual users of

FreeHand MX ask

how to turn a bitmap

or photograph into

vector art. Naturally,

the hope is that there’s

a button to click and

the job is done. There’s

not, but it’s close.
by ron rockwell

tracing

tracing

6 • 2004 MXDJ.COM • 35

Each image will be different in

terms of both its content and the look

you have in mind for the final artwork.

That makes it pretty tough to create a

cut-and-dried tutorial, but there are a

few basics that you can follow.

The Trace Tool
The Trace tool is one of those

areas in FreeHand where nothing is

cast in stone. There are three or four

main variables, and thousands more

within them. There’s absolutely no sin-

gle-shot approach – you have to

experiment. There are, however, a few

points to consider when using the

Trace tool. The bitmap you use should

have a resolution of between 300 and

600 lines per inch. If you use a bitmap

outside these limits, you’ll get jaggies (on

the low side) and too many points (on

the high side). Higher resolution scans

also take up a lot more RAM, and that can

slow down your operation or even bring

it to a crashing halt. A high-res tracing is

a common reason that a FreeHand docu-

ment won’t print. You will also get differ-

ent results depending on how your

FreeHand Redraw preferences are set. If

you have them set to Low, you will get a

jaggier scan than if you set the on-screen

image resolution to High or Full.

Your tracing can have color results,

or grays, depending

on the choice you

make in the Color

Mode menu

(see

Image I). Beyond that, you can choose

from 2 (black and white) to 256

color/gray steps in RGB or CMYK. The

resolution settings are Low, Normal, and

High. Low will give you a looser trace in

a short time; High takes longer but pro-

vides many more details and a tighter

tracing. Normal is adequate for most

jobs, as it splits the difference between

Low and High.

The Trace tool can trace on all layers,

just foreground layers, or just the back-

ground layer. Use the tool to drag a rec-

tangular marquee over the area you

wish to trace. The tool will trace every-

thing inside the rectangle, so you can

surround an entire object or trace a rec-

tangular portion. When working with a

bitmap, it’s best to place the bitmap in

an area that doesn’t overlap any other

objects when you do the tracing. For

instance, if you have drawn a rectangle

to surround the bitmap and it’s on a

foreground layer, it will become part of

the tracing if you have All or Foreground

selected. Moving the rectangle to the

Background layer and choosing

Foreground would solve the problem.

You could also hide (View>Hide

Selection) the rectangle until you’re

36 • MXDJ.COM 6 • 2004

im
a

g
e

 I

im
a

g
e

 I
I

im
a

g
e

 III

6 • 2004 MXDJ.COM • 37

through with the tracing operation. At

any rate, look at your layer and place-

ment situation and make a Trace Layers

choice accordingly.

Moving down the Trace tool options,

you come to the Path Conversion menu.

Each choice yields a totally different trac-

ing – luckily, we have the Undo com-

mand. The Outline conversion outlines

contiguous areas of color and creates

closed, filled paths. You have the further

options of the type of Path Overlap. If

you’re tracing line art or text, use None;

for photographic-type images, choose

Loose; and if you want a close represen-

tative of the bitmap in the tracing, pick

Tight.

If your image uses a lot of strokes, and

few filled areas, then Centerline is a good

choice for the trace. You can choose to

have Uniform, 1-point strokes, or deselect

Uniform to end up with a more fluid,

hand-drawn tracing.

For more ticklish drawings with

strokes and filled areas, pick the

Centerline/Outline conversion method.

This method combines the other two

methods and allows you to decide how

to treat paths according to their width.

Your choice is to determine that paths

with widths lower than 2 to 10 points

(your choice) are left open. These

options may seem trivial, but make a

huge difference in the resulting trac-

ing.

The last conversion method is called

Outer Edge. I call it the wire outline, and

use it all the time to get a very faithful

perimeter outline of my vector artwork

(as long as I’m tracing closed paths). All I

have to do is change the stroke width to

something heavier and I’m done. I can

also fill the trace with white to separate

the drawing from its background, or use

(without a stroke) as the basis for a

drop shadow.

All that is confusing

to read about, so

look at Image II for a

visual description.

The lacy metalwork

and solid areas make

it a good test subject.

Other than changing

the Path Conversion

option, none of the

settings were modified.

Notice the loss of detail

from Outline to

Centerline, and the addi-

tion of black to the

Centerline/Outline meth-

ods. A second tracing using

Outer Edge was made of the Outline

tracing. Then it was sent to the back

(Modify>Arrange>Send to Back) and

given

a blue

tint fill.

Remember

that the tracing

you get consists of

vector paths. Those paths are

fully editable, and are in every way just as

if you had drawn them yourself.

So much for a relatively good trace,

but if you’re looking for clip art or a dif-

ferent feel to the artwork, try adding

strokes and changing colors in the

Object panel as seen in Image III. For this

approach, the Name All Colors Xtra was

invoked (on the 4-color gray tracing),

adding three grays to the Swatches

panel (with black already in the Swatches

panel). Then create new colors in the

im
a

g
e

 V
I

im
a

g
e

 I
V

image V

38 • MXDJ.COM 6 • 2004

Mixer panel and add them to the

Swatches panel. Open Edit>Find &

Replace, and select the dominant menu

color within the tracing. In this case, it

was the middle gray. Add a stroke (I

added a black 1-point stroke), and

change the fill color to something new.

Here, I chose a yellow-orange tone. Then

using Find & Replace again, select anoth-

er gray in the image (here, the light gray).

This time, I gave it a Hairline (0.25-point)

stroke and a lighter fill color. Finally, I

traced the image using the Outer Edge

conversion method, applied a heavy

stroke, and sent it to the back.

Uses of the Trace Tool
With a basic understanding of how

the Trace tool works, you can save time

and put your energies into designing and

drawing instead of tedious manual trac-

ing with the Pen or Bezigon tool (think

how long it would take you to trace the

birdcage in Image III with the Pen tool).

Tracings can be used as masks or clipping

paths, and also a quick way to turn a line

illustration into a compound path. When

you convert line art into composite paths

by tracing, you are basically doing the

work of the Expand Path Xtra. The result-

ing object can be filled with solid color,

given a gradient of some kind, or used as

a clipping path.

Distortion
For this spot illustration (Image V), I

found a photo of a rubber duck.

Normally, this image would suffice for use

on the Web or in print, but I wanted to

apply the image to a child’s building

block. That process would involve distort-

ing the image in a way that can’t be done

in FreeHand, so I had to make a bitmap-

to-vector

con-

version. I decided to use the Trace tool to

make the switch. However, the yellow

color of the duck was so even that a reg-

ular tracing created too many shapes and

points to make a viable vector graphic. In

order to clarify all the yellow tones, there

were nearly 2,500 objects in the tracing.

That’s overkill. Because there isn’t a lot of

detail in the image, I decided to do a

combination of Trace tool and hand-

drawing. I used the Pen tool to outline

shadow areas in the yellow section, and

placed the shadows on a separate layer.

Still using the Pen tool, I drew the other

objects, placing each on its own layer to

make later alterations easier to select. (If

you haven’t used the shortcut, you can

select everything on a layer by holding

down the Option/Alt key and clicking the

layer’s name in the Layers panel.) Some

areas, such as the eyes and bowtie, were

traced with the Trace tool. The Trace tool

can be dragged diagonally to trace

everything within the confining rectan-

gle, or you can pull another of its tricks

out of the bag.

What tricks? Well, click the cursor on

an area in a bitmap or vector object,

and according to the parameters you’ve

set in the Trace dialog box, the tool will

create a selection outline. Yup, the army

of marching ants will surround the

clicked area. Hold down the Shift key to

add to the selection. It can be the same

color in a different area, or it can be a

different color – whatever you click will

be added to the selection. If you hold

down the Option/Alt key, you will dese-

lect a given area. It’s pretty much the

same as working in Fireworks or

Photoshop, but not quite as predictable

or consistent in its operation. Once the

selection is complete, you can’t just add

a fill or a stroke – the ants just keep on

marching around – what have you

accomplished?

Well, move the cursor over any part of

the selection and the cursor will display a

small square beneath it. Click inside the

selection, and a new option box will

appear. You will be able to choose Trace

Selection or Convert Selection Edge (see

Image IV). The former will do a regular

tracing according to the parameters

you’ve already set in the Trace dialog box.

That means as many levels of color or

black and white and all the other options

you’ve selected will be in play. When you

click this option and the OK button, the

tracing will proceed. On the other hand, if

you choose to Convert Selection Edge,

each of the areas will be selected and

filled with black or white, and given a

black stroke, even though you may have

chosen to show 256 CMYK colors. Just for

reference, clicking on just the bowtie and

both eyes of the duck provided 1,189

objects with Trace Selection, and 22

objects with Convert Selection Edge

using the same parameters for both

scans. The upside to objectively selecting

parts of a bitmap or vector graphic with

the wand is that you don’t have the extra

parts of the image that you have when

using the rectangular marquee method.

When the tracing was complete, col-

ors were chosen with the Eyedropper

tool and added to the Swatches panel.

By selecting all objects on particular lay-

ers, colors were applied to the various

elements. I ended up with ten colors,

plus black and white. Finally, I used the

Trace tool again to draw a rectangle

around the duck, using the Outer Edge

option. I chose to add a custom Brush

stroke to the path, and sent it to the back

of the layer stacking order. The default

brush from FreeHand looked a little bor-

ing, so I used the Knife tool to cut the

path at various intervals around the duck

(see Image V).

In FreeHand, you can change the

height and width of a bitmapped object,

and you can rotate or skew the object,

but you can’t use the 3D Rotate tool, the

Fisheye tool, Envelope distortion, and

you can’t apply the bitmap to the

Perspective Grid. But we’re artists, and we

need to do stuff to pictures. How do we

get around FreeHand’s limitations? That’s

where turning bitmaps into vectors

im
a

g
e

 V
II

6 • 2004 MXDJ.COM • 39

comes in. I created a 3D child’s block with

the Extrusion tool. I wanted the duck

(sans brush outline) and letterforms on

the sides of the block. All I had to do was

place an Envelope on the duck, and

adjust the corners of the envelope to fit

the face of the block, as shown in Image

VI. The type characters could have been

extruded with the Extrusion tool, but for

the purpose of this short tutorial, they

started as shadow color, and were con-

verted to paths, then applied to the block

using Envelopes. Then the letterform was

cloned and shifted with the keyboard

arrow keys to create a small amount of

depth, and the color was lightened.

Masks and Clipping Paths
To continue on with the bird train of

thought I’m on, I traced a badminton

birdie. By the way, all the images in this

article (except the assembly illustration

near the end) came from the Hemera

50,000 Photo-Objects CD set; other

images can be downloaded from their

site at www.hemera.com. Image VII

shows the original bitmap, followed by

several versions of a single scan. The scan

was done with eight (gray) colors. I

moved each color to its own layer.

Immediately to the right of the bitmap is

the scan, with a white fill and paths

stroked at a quarter-point. Still working

on the bird metaphor, I thought of feath-

ers, therefore fishing flies, and I used one

of the layers in the scan as a clipping

path. I placed the fishhook over the

birdie and Cut it (Cmd/Ctrl+X). Then I

selected the layer I wanted and chose

Edit>Paste Inside, and turned off all the

other layers except one that I gave a light

gray stroke. That looked a little too vis-

cous for a backyard game, so I did an

Undo and filled my clipping layer with

black, getting a nice black and white

approach appropriate for clip art. I was

on a roll, so I found a good feather image

and did a Paste Inside – in just the black

shape, but then I added the gray-stroked

layer for a little color in the bottom-right

image.

More Clipping Paths
I can’t get enough of birds lately, so I

imported an image of an eagle. This

time, I used the Trace tool in the Outer

Edge mode to get a really fast outline. I

placed the eagle’s outline over a flag

image, Cut the flag image, and pasted it

inside the eagle shape (Edit > Paste

Inside) as shown in Image VIII. Add a cal-

ligraphic stroke and you have instant

patriotism.

Stacking Up
Depending on your settings, when a

trace is created in FreeHand, it appears

pretty much the same as the original

object. But the actual tracing is much dif-

ferent when you tear it apart. This is

because individual colors are placed on

separate levels. Not layers, but levels.

There will be one color that completely

encompasses the background, even

though only a small area of that color

appears in the tracing. If you have traced

Advertising Index

Advertiser URL Phone Page

ActivePDF www.activePDF.com 41

CFDynamics www.cfdynamics.com 866-233-9626 9

FuseTalk www.fusetalk.com 866-477-7542 13

HostMySite.com www.hostmysite.com/mxdj 877-248-4678 47

Interakt www.interaktonline.com 6

Macromedia www.macromedia.com/go/dwupdated Cover 2

Macromedia www.macromedia.com/into C4

Seapine Software www.seapine.com 888-683-6456 27

Charles River Media www.charlesriver.com 800-382-8505 21

Flashforward2004 www.flashforwardconference.com 877-435-2744 Cover 3

im
a

g
e

 V
II

I

40 • MXDJ.COM 6 • 2004

with 256 colors, you’ll have 256 levels of

chunky objects stacked on top of each

other – and you’ll watch the image build

every time you change position on the

screen. There are times you may want to

edit color levels, delete them, or combine

them with other colors. The ostrich in

Image IX was scanned in only 4 colors. To

separate those colors quickly, I chose

Name All Colors from the Xtras menu

(keep in mind that if you have other vec-

tor graphics in the document, their colors

will also be named and could confuse

your editing). Then I used Find & Replace

to select each of the colors, which were

then grouped and sent to their own new

layer. After a few minutes, each of the col-

ors was available for editing or manipu-

lating. On the right side of Image IX, I’ve

separated the layers so you can see how

the color levels are created. Notice that

the bottom layer is a solid fill of black,

and shows through holes in the dark

green and other layers.

Getting Creative
Having completely exhausted bird

relationships, I chose an assembly illus-

tration that I needed to spice up for a

manual. The problem with computer-

generated illustration is that they usual-

ly look as if they’d been drawn on a

computer – imagine that! It’s an easy

situation to get around, and there are a

couple ways that FreeHand MX can

help.

First, I had to select all the strokes in

the drawing and convert them into a sin-

gle compound path. This drawing was

done with three or four line weights, and

had been enlarged or reduced at vari-

ous times, so it wasn’t as simple as

using the Find & Replace panel

to select each of the stroke

sizes, and then convert

them to paths. That

would take a lot of time

and energy. There’s

also the chance that

one or two paths

would somehow be

overlooked. But by using

the Trace tool it was an

easy matter of dragging

the wand marquee

across the drawing. I

clicked the selection

and chose Convert

Selection Edge

from the pop-

up window. In

just a few sec-

onds, the entire drawing

had been converted to a

compound path! I was

warned that there were too many points

to trace at the resolution I had selected,

and I took the option to trace at a lower

resolution. I deleted the stroke and

applied a dark blue fill color. Due to the

roughness of the tracing, I had a very

casual drawing style working for me (as

seen in the bottom half of Image IX) com-

pared to the “computer generated” origi-

nal (top half, same image). I added a

Ragged vector effect in the Object panel,

with three copies. The final effect is simi-

lar to a rough pencil sketch that has been

tightened up with a felt tip pen. With or

without the vector effect, the drawing

certainly has lost its computer generated

look.

Using the same tracing technique to

select all the line work and create a sin-

gle compound path, you have other

options that are pretty easy, but look

complicated. For one thing, you can

apply a gradient to the compound path

so the lines fade out or blend into the

background. That gradient can be a lin-

ear gradient from left to right or up and

down, or a radial gradient that fades

out at the terminus of the lines. It’s a

quick trick to apply to soften up any

drawing.

Summary
The Trace tool has been overlooked

for many years, and it’s too bad. There

are many uses for the tool that will

make your job easier. As with a lot of

features and tools in drawing pro-

grams, it requires a bit of experimenta-

tion, but it is certainly time worth

spending.

Acknowledgments
Many thanks to John Nosal, David

Spells, Peter Moody, and other engineers

at Macromedia for the technical editing

they provide.

im
a

g
e

 X

image IX

Illustrator, designer,

author, and Team

Macromedia member

Ron Rockwell lives

and works in the

Pocono Mountains of

Pennsylvania. He is the

author of FreeHand 10

f/x & Design, and is

about to introduce a

FreeHand MX

course. He has

Web sites at

www.nidus-corp.com

and www.brain

stormer.org. Contact

him at guru@

brainstormer.org with

questions or article

requests.

 GEEKSGEEKSFREAKSFREAKS&
 The great

thing about being

a “Freak” and working

with a “Geek” is not having

to concern yourself with the

nitty-gritty details of coding a

dynamic site. The bad thing is

that you will get involved with

the nitty-gritty details

whether you like it

or not.

F&G

42 • MXDJ.COM 6 • 2004

 GEEKSFREAKS&

saga the

continues
by tom green

44 • MXDJ.COM 6 • 2004

In my previous article (MXDJ Vol. 1,

issue 4), I walked you through my

“epiphany.” I had redesigned my site,

basked in the accolades of my students

and colleagues, and then discovered to

my chagrin that I had screwed up – big

time. I had a tutorial area that was a clas-

sic case of a freak focusing on the design

and not wondering, “Can anybody use

this page?”There were a few dozen tuto-

rials available but they were impossible

to find.

The entrance page simply laid them

out and said to the visitor, “You have a

brain. Figure it out.”This is a huge error

and once I “figured it out,” I wandered

down the hall from my office to that of

my colleague James Cullin, the ideal

ubergeek, and described my error. I also

added the fact that, in my humble opin-

ion, the solution was to get dynamic and

could he help. Rather than point fingers

or laugh up his sleeve at me, James did

something that is so typical of James – he

pulled out a notepad and said, “Let’s get

to work.” We quickly sketched out a

broad plan of attack and I left James

alone.

This article describes how James, in

typical geek fashion, attacked the prob-

lem. It shows how he worked from con-

cept to code and offers you a few ideas as

to how you can approach the task of

building a database and then “hook” it

into MySQL through ColdFusion MX. We

started the task with good old-fashioned

pragmatism.

Once we understood the scope of the

project, our first question was, “How does

it work?” It is all well and good, in typical

freak fashion, to say, “Here’s what I want

the page to look like.” It is also all well

and good for the geek to say, “Here’s

what I want the data to look like.” What

both are overlooking is a fundamental

question: How does the data get into the

design? The first step for both of us was a

rather intense discussion around that

very question.

From a design point of view, there

were a couple of approaches to solving

this issue. The first was to simply flow the

images and text into the page from the

database. This seemed to be the ideal

solution. I write the tutorial, do a few

screen shots, toss it all into a database,

and somehow the page, thanks to James,

is magically constructed on the server

and shot into the browser. As James and I

fully explored this idea, it became evident

it was the worst possible solution. This

was due to the way the page is designed.

The page is constructed from a series

of div tags (see Image I). All of the words

and images are placed in a <div> with

the ID of “content”. The major elements in

this area are a headline, body text, sub-

heads, images, and captions. As the freak,

I controlled the placement of all of these

elements, and there was no way to con-

trol the placement of the images and

captions if they were to be inserted into

the <div> on the server without a lot of

unnecessary extra work on both our

parts. Plan A, the most obvious solution,

was discarded.

The solution we eventually arrived at

is based upon how I work with

Community MX. Having written for them

for a couple of years, I always found the

process to be rather smooth. All articles

are contained in a folder, named using an

article number generated by a database,

and all of the images, pages, and uploads

sit in that folder. This is a rather tidy solu-

tion to the problem at hand. Everything is

im
a

g
e

 I

im
a

g
e

 I
I

6 • 2004 MXDJ.COM • 45

in one place, making development and

maintenance extremely easy.

We quickly decided this model met

our needs. James saw how easy this

would make his life and, rather than an

article number, he suggested we use the

date the article was created for the folder

name. My first reaction was a bit nega-

tive. I foresaw a potential situation where

two or three tutorials could be posted on

the same day. James’ response was essen-

tially, “That’s my problem. Worry about

something more important.”The solu-

tion, as you will see, had more to do with

me than anything else.

What was important to me was how

the user would locate a tutorial. I felt it

important that the user be able locate it

by either viewing all of the tutorials in a

category or through a keyword search. I

toyed with a couple of ideas, but the

design of the page presented me with

the most logical solution. On the right

side of the page is a <div> that contains

link information based upon the subject

of the page. I decided to have the main

content area welcome the user to the

page and to use the link area for the

search. When the user selects a subject or

does a keyword search, the results flow

into the “Content <div>”. From there the

user can select the tutorial and go to

work.

This is an invaluable step because it

gave James a clear idea of how the user

would access the information and the

functionality involved. It also gave both

of us a roadmap to follow. The concept, in

the form of a Dreamweaver MX 2004

page, was sent to James with the follow-

ing question: “Is this doable?”This is an

important question because it puts the

freak and the geek on common ground.

The geek can understand my thinking,

and I learn (rather quickly) whether my

idea is too ambitious. This is the best time

to discover this because changes can eas-

ily be made. Discover it in the middle or

at the end of the process and you are

essentially relegated to starting all over

again (see Image II).

Building the ‘Tutorial
Engine’

The first step was to build the MySQL

database tables that reflect the architec-

ture we had agreed to. James discovered

that this job, based upon our discussions,

was a relatively simple undertaking

because it only needed one table, as

shown in Image III.

You will note the naming conventions

are fairly intuitive. James’ explanation for

this should have several of you nodding

and saying, “Been there, brother.”

“Every table I create starts with ‘tbl_’”,

said James. “I wish I could say I had this

good sense right from the start but I

can’t. It is only after your 9th or 10th ‘all-

nighter’ where you meet a deadline by

the skin of your teeth that you realize

there just has to be a better way. When it

is 3:00 a.m., and you started work at 8:00

a.m., you will discover that you either

develop a distinct naming pattern or just

live with the confusion.”

This logical naming convention is

used throughout. For example, the pri-

mary key in the database uses “pk_” in

the name. Columns use “col_” and so on.

This not only helps James build the data-

base using clearly labeled elements but

also it gives anybody else maintaining

the database a very clear idea of what’s

what.

When geeks and freaks work together

for as long as James and I have, they tend

to become sensitive to each other’s

quirks. For example, the DataType for the

article titles, “col_title” is text. By doing

this James allows me the flexibility to get

a bit wordy with the titles. This DataType

supports from 1 to 65,535 characters or

about 8,000 words without truncating

the title. I am not to sure whether this

was shrewd planning or self defense

because, according to James, “I can sleep

easy knowing there is no way in hell Tom

will ever have his title truncated.”

The rest of the database design fol-

lows a similar plan. Using the category

drop-down list from the concept shown

in Image I, James created a category col-

umn that plans for product names of

more than eight words. There is a column

for the abstracts I will write and it, again,

allows up to 8,000 words. The Key Words

column allows for the search. The inter-

esting aspect of that name is the use of

the upper case lettering in the name. “As

my naming convention evolved,” said

James, “I found it confusing to have mul-

tiple underscores. I established that if a

im
a

g
e

 I
II

im
a

g
e

 I
V

column needs multiple words to describe

it, such as Key Words, I will capitalize the

first letter of each word.”

James also decided to categorize

each article by the date the article was

posted – col_DatePosted – and to set the

datatype to “datetime”. Finally, the entire

Tutorial Engine resets on putting each

article and its related images in a unique

folder. This is the purpose of

“col_FolderName” and the “safest”

datatype for it was text.

Building the Admin Page
Next James and I discussed how I

would actually get the content into the

database. There were two agendas here.

The first was it had to be easy for me to

use – I didn’t need was a complicated

process. The information was to be clearly

presented and the data required was to

be simple to input. I was also looking

down the road and, if others were to post

tutorials, the process had to be intuitive

and not require a few hours of training.

From the freak point of view, the design

imperative was functionality and usabili-

ty rather than award-winning design. The

site’s users will never see it, so design

consistency was unnecessary.

James and I discussed a couple of

ideas and settled on the design shown in

Image IV. It is a simple design whose sole

focus is data collection. Each field is clear-

ly labeled and there is no ambiguity. The

big surprise for me was the inclusion of

space for 10 keywords. When we first dis-

cussed this feature, in typical freak fash-

ion, I mentioned I would most likely add

the keyword search “based on a couple of

words.” In typical geek fashion, that was

translated into a “specific number of

words.” James knows me and I suspect he

did it just to be sure I couldn’t fill it. With

the admin page designed, James went to

work.

Coding the Admin Page
James is quite methodical and precise

in his approach to coding. In fact, he

rarely uses Dreamweaver’s Design View

preferring, instead, to work where he

feels most comfortable: in the Code View.

This is quite understandable for someone

who, as he puts it, “cut his teeth on

HomeSite”. This methodical approach is

quite visible in how he coded the admin

page. James believes that each and every

form element needs to have an intuitive

name attribute. “This is critical prep

work,” says James, “in advance of writing

the ColdFusion MX script that actually

writes to the database.”

In the XHTML example in Image V, it is

important to note how the <form> tag

action attribute is directed to the CFM

script named “AddArticle.cfm”. James also

used the same naming process for the

46 • MXDJ.COM 6 • 2004

im
a

g
e

 V
im

a
g

e
 V

I

48 • MXDJ.COM 6 • 2004

<input> and <select> tags as he did

when he set up the database. The names

actually mean something. This tends to

eliminate confusion at a later date. This

approach is also evident in the code for

the description and keyword fields,

where each of the ten keywords is given

a unique attribute (see Image VI).

The final bit was something I was look-

ing forward to seeing. There are any num-

ber of ways of approaching the Month,

Day, and Year drop-down menus and there

are as many approaches to this as there are

geeks in this business (see Image VII).

First James used the names of the

months for the drop-down list instead of

the number that the MySQL datatype

stores. The number is found in the value

attribute for each of the option tags. “ I

set up the code this way,” he said, “in

anticipation of writing to the database

which stores the date using the ‘datetime’

datatype.”The other interesting approach

was the dates drop-down. “Lines 86 to 90

show that I am lazy,” he said. “I don’t like

typing. When faced with a situation of

needing to create 31 <option> tags to

cover the 31 days of a month, I used a

cfloop to do it for me.” As a teacher, I

especially appreciated this approach

because, like James, I believe in letting

the software do the work.

Coding the Data Flow
The Create button submits the form

data to a file named “AddArticle.cfm”. This

ColdFusion script has two purposes:

1. To write the information collected to

the database.

2. To provide me (Tom) with clear instruc-

tions regarding the folder name. This is

a fancy way of saying, “Make the nam-

ing process idiot-proof.”

A major issue to be dealt with was the

keywords. When the button is clicked the

keywords simply won’t work. They are a

collected as a series of 10 variables. The

database is set up to store them as a sin-

gle comma delimited string. James’ first

step was to merge them into one string

using the code shown (see Image VIII).

The first line of the code establishes a

global variable named “KeyWords”.

Knowing that I would be hard pressed to

come up with 10 words for certain tutori-

als, there was a 100% probability there

im
a

g
e

 V
II

im
a

g
e

 V
II

I

6 • 2004 MXDJ.COM • 49

were going to be blank fields when I

clicked the “Create” button. Line 3 is a

rather elegant solution to this issue.

The <cfif> tag inspects the first field to

see if it is blank. James also knows that if

there is a way to screw it up, I will find it. For

example, my “accidental”use of the spacebar

has resulted in some pretty legendary stories

amongst our faculty. This is why he added

the ColdFusion “trim”function to strip out

any “accidental”spaces to the right or the left

of the keyword. If the field is blank, there will

be no value in the field. This explains the neq

operator. It is the way one expresses “not

equal to”in ColdFusion MX and, in this case,

if there is a word, then the value is not equal

to null (the empty quotation) and the next

line of code is executed. If it does equal null,

then the code skips to the next CFIF state-

ment and repeats the process.

The next line – <cfset KeyWords =

“#KeyWords##form.kw1#,”– tosses the word

into the string that is being assembled and

the XHTML form variable being used is

#form.kw1#. The “#”signs enclose each of

the two variables and the comma at the

end is used because the keywords in the

database will be separated by commas. This

whole process repeats itself nine times until

the string is assembled in the database.

With keywords out of the way, James

next turned his attention to the date. This

too is rather interesting because the form

kicks out three values – Month, Date, Year

– while there is only one column for the

date in the database. The code used to

assemble this single date element is:

<cfset DatePosted =

CreateDate(form.YearNumber,form.MonthN

umber,form.DayNumber)>

The ColdFusion MX function

CreateDate is used to create the data

string for the “DatePosted” variable. This

function requires three arguments for

Year, Month, and Day, which must have

numeric values. This wasn’t terribly diffi-

cult to accomplish because James did

just that when he coded the drop-down

menu earlier.

The final issue was making the folder-

naming process idiot-proof. The name is

set using this code:

<cfset FolderName =

“#form.category##form.DayNumber##form.

MonthNumber##form.YearNumber#”>

“I created a variable named

FolderName and, to make it unique, I

assemble the FolderName using the cate-

gory of the article Tom chooses and the

three date elements.” says James. “My

assumption here is that Tom won’t post

two Dreamweaver articles on the same

day.” I am glad I asked. This is important

information for me to be aware of.

From the Page
into the Database

With the data assembled, the time had

arrived to move it into the database and,

according to James, “ColdFusion MX makes

inserting a record into a database table

incredibly easy.”The code that accom-

plished this task is shown in Image IX.

Lines 39 to 42 are the opening

<cfquery> tag. Each ColdFusion query

has a name and James’ protocol is to

make the name as verbose and intuitive

as possible. “I learned that lesson the

hard way,” he told me. “When a file is due

at 9:00 a.m. and it is 3:00 a.m., the last

thing you need is to be wondering which

query does what. If the name is verbose

and obvious, even the most sleep-

deprived coder can figure it out.”

The datasource is how ColdFusion MX

maps to the database. In this case, our

ISP has configured our ColdFusion MX

server so that each site has a datasource

that maps to a corresponding MySQL

account. To access that account, we need

a username and password which are

detailed in the <CFQUERY> tag.

Lines 44 and 45 are not ColdFusion

code. Those lines are pure SQL, which is a

database manipulation language. The

first line may, at first glance appear to be

a bit convoluted:

INSERT into tbl_articles (col_title,

col_category, col_description,

col_KeyWords, col_datePosted,

col_FolderName)

In fact it is simply saying where to

insert the values from the Add

Articles.cfm page into the database. The

locations are contained in the brackets.

Now that we know where the values are

to be placed we also have to answer the

question, “What values?”The next line of

code handles this:

VALUES (‘#form.title#’,’#form.catego-

ry# ‘,

#form.description#’,’#KeyWords#’,’#Dat

ePosted#’,’#FolderName#’)

What is absolutely critical in this code

line is that the order of the items in the

VALUES statement precisely matches the

order of their counterparts in the INSERT

statement. As well, the “title”, ”category”,

and “description” come from the form

created in the Admin page, which

explains why they are prefaced with

“form”. One item, “KeyWords”, doesn’t use

this convention because its value was

established in line 1 of this page’s code.

You may also have noticed the vari-

ables are surrounded by single quotes.

This is because the information is going

into the database as text.

Another inconsistency you may have

noted is the variable being inserted in the

“col_FolderName” column of the data-

base. It is named “FolderName”. This vari-

able name was also set earlier in the

page.

Now that we have the data I input sit-

ting in the database, how does it appear

on the page? That, ladies and gentlemen,

is a whole other story in the Freaks and

Geeks saga.

im
a

g
e

 I
X

Teacher, author,

chief cook, and bottle

washer. Instructor at

Humber College’s

School of Media

Studies in Toronto,

Tom Green is also

the author of Building

Web Sites with

Macromedia Studio

MX and Building

Dynamic Web Sites

with Macromedia

Studio MX 2004.

Both are published

by New Riders.

The course coordina-

tor and “Lead Geek”

for the Internet

Management and

Interactive

Multimedia programs

through the School of

Media Studies at

Humber College in

Toronto, James

Cullin currently

teaches courses in

Internet technology

and Web program-

ming. tgreen@coge-

co.ca

50 • MXDJ.COM 6 • 2004

by irv kalb

6 • 2004 MXDJ.COM • 51

Even in Director, the meanings of

some of the buttons might not be imme-

diately clear. In the Director main toolbar,

there is a button with two right-angled

arrows. The novice Director user might

think that this is some sort of traffic dia-

gram from England showing where cars

may turn left (see Image I).

However, if you move the mouse over

this button for a while, a tooltip shows up

to explain the meaning of this button

(see Image II).

This article shows how to build a set

of two related behaviors that will imple-

ment tooltips in Director. The first behav-

ior will be the “Tooltip Rollover.”You can

attach this behavior to any interface ele-

ment you wish to have a tooltip. The

other behavior will be the “Tooltip

Display” behavior. This behavior will be

attached to a single sprite made up of a

field member. This one sprite will be used

to display the text of the tooltip.

We’ll discuss the following concepts:

• Instances of behaviors

• Events and event handlers

• State machines

• Timing in milliseconds

• Intersprite communication

• Calculating positions and rectangles

on the Stage

Tooltip Rollover
First we’ll discuss and write the

Tooltip Rollover behavior. The Tooltip

Rollover behavior will detect when the

mouse has been within the rectangle of a

sprite for a given amount of time, and

then send the text to be displayed to the

Tooltip Display sprite that lives in a differ-

ent channel.

Let’s think about the essential pieces

before writing some code. Among the

things we must do are the following:

• Determine what text should be dis-

played

• Build a timing mechanism to see if the

user has kept the mouse inside the rec-

tangle of the sprite for an appropriate

amount of time

• Find out where the Tooltip Display

sprite is

• Send text to the Tooltip Display sprite

at the appropriate time

Text to Display
In Director each cast member can

have a name. For simplicity, we will start

by using the name of the rolled over

member as the text of the tooltip. We can

get this name by using the following

code:

property spriteNum

property pName

on beginSprite me

pName = sprite(spriteNum).member.name

end

“spriteNum” is a special property vari-

able that can be used in behaviors. When

it is declared as a property and used in a

behavior, Director automatically gives it

the number of the channel to which the

behavior is attached.

One of the big buzz phrases in pro-

gramming these days is object-oriented

programming (also known as OOP).

Behaviors are a great way of learning more

about OOP. Programmers write behavior

scripts. But when a behavior script is

attached to a sprite, Director creates a new

object from the script. Each such object is

called an “instance” of that behavior.

Here’s a simple example. Create a new

Director movie. Go to the paint window

and create a square. Name the member

“Square”. Then in the paint window, cre-

ate a circle and name the member

“Circle”. Now open a script window and

enter the code above. Before the last line

(the “end” line) of the beginSprite han-

dler, add the following line:

put “spriteNum” && spriteNum &&

“pName” && pName

Name this script “Tooltip Rollover”.

Using the Property Inspector, make sure

that you set the type of this script to

“Behavior”.

Now drag the Square member into

channel 1, and drag the Circle member

into channel 2. Finally drag the Tooltip

Rollover behavior script onto both

sprites. Now run the movie.

If you open the message window, you

should see the following:

--“spriteNum 1 pName Square”

--“spriteNum 2 pName Circle”

At run time, Director creates two

instances (objects) from the single

behavior script. Each instance uses the

exact same code, but each instance gets

its own copy of the data – the property

variables. Each gets its own copy of

spriteNum and its own copy of pName.

As we will see in a moment, the value of

any property variable declared in a

behavior script is “remembered” and can

be accessed by any other handler in that

script.

Any change you make to the code in

a behavior script will affect all sprites to

which the behavior is attached. This is a

very important part of object oriented

programming.

Timing
Now we need to build a way for the

behavior script to know when is the right

time to show a tooltip. Again for simplici-

ty, we’ll just pick a set amount of time.

Let’s say that we will trigger a tooltip

when the user has kept the mouse within

the rectangle of the rolled-over item for

one second.

To build this timing mechanism, we

must understand two important con-

cepts: the “on exitFrame” handler and the

concept of a state machine. At each

frame, Director sends out special mes-

sages to all sprites. One of these mes-

sages is the exitFrame message. The rate

at which this message is sent is depend-

ent on the frame rate of the Director

movie. In a behavior, you can write on an

exitFrame handler to receive this mes-

sage. The content of the exitFrame mes-

sage is completely up to the programmer.

You can tell Director to do anything you

want it to do on each such call. A “trick” is

to make the same handler do different

things under different circumstances. In

our case, in the exitFrame handler, we

can constantly check how long the

mouse has been within our rectangle. If it

has been over a second, we can make a

call to display the tooltip.

image I

52 • MXDJ.COM 6 • 2004

image II

6 • 2004 MXDJ.COM • 53

But how do we do this checking? The

answer lies in a concept called a state

machine. When implemented in software,

a state machine is a piece of code that

does something different based on the

value of a variable. This maps nicely into a

Lingo case statement:

case someVariable of:

State1:

--execute this code here

State2:

-- execute this code here

…

StateN:

-- execute this code here

end case

The key is that in any branch of the

state machine – or in other handlers in

the same script – we can change the

state to some other state.

Here’s how we’ll apply this idea to our

Tooltip Rollover behavior. We will declare

a property called psymState that will be

used to keep track of what state the cur-

rent behavior is in. In thinking through

the different states, the behavior will be

in one of three states:

• #notOver: The mouse is not over our

rectangle

• #overAndWaiting: The mouse is over

our rectangle and we are waiting for

one second

• #showing: The tooltip is showing

We’ll start psymState in the #notOver

state. Whenever the mouse enters our

rectangle, we should go into the

#overAndWaiting state. When we are in

this state for one second, we trigger the

tooltip to display, and change our state

to #showing. Whenever the mouse leaves

our rectangle, we hide the tooltip and

change the state to #notOver.

In computer science classes, students

are asked to draw “state diagrams” to

describe these type of interactions.

Another approach is to create a table

with a list of events as rows (exitFrame,

mouse-Enter, mouse-Leave), and a list of

states as columns (#notOver,

#overAndWaiting, #showing). This is

often a good idea to be sure to account

for all cases. In each cell, you describe

what action takes place and any change

in the state variable. Then the array is

turned into code.

However, this state machine is rather

simple and will become clearer with

some simple code. Code I shows what

this state machine would look like in

pseudo-Lingo. Notice the addition of the

Lingo on mouseEnter, on mouseDown,

and on mouseUp handlers to handle

these Lingo events.

By declaring psymState as a property

variable, it means that each instance of

this behavior will have its own version of

psymState. Further, psymState can be

used in any handler in the script, and its

value will be remembered across these

calls. For example, when the user moves

the mouse into the rectangle of the

sprite, the on mouseEnter handler is

called by Director, and here we set the

state to #overAndWaiting. The exitFrame

handler is called many times each sec-

ond. When the value of psymState

changes, the exitFrame handler will do

something different – it will take a differ-

ent branch in the case statement.

To finish the timing aspect, we need

to figure out how to count from zero to

one second. There are many ways to do

this, but here is the simplest. When the

user first brings the mouse over the

sprite, we’ll calculate what time it will be

one second from that point. Lingo keeps

time in milliseconds. You can find out the

current value of milliseconds from when

the computer was turned on by using the

Lingo function “the milliseconds”. To find

one second from the current time, we

can add 1,000 to the milliseconds. We can

save this value in a new property variable

like this:

pmsShowTime = the milliseconds +

1000

Finally, in the exitFrame handler, in

the #overAndWaiting part of the case

statement, we can check for the one sec-

ond elapsed by checking if the current

value of the milliseconds is greater than

the pmsEnd that we calculated earlier. If

so, then we show the tooltip and change

our state to #showing. The check looks

like this:

If the milliseconds > pmsShowTime

then

-- Show the tooltip

psymState = #showing

end if

It turns out that in this behavior

script, the #waiting and #showing states

don’t really do anything, and they could

be collapsed into a single state. However,

for the sake of clarity, I like to show all

possible states. It is also a good idea to

keep these states in the code in case you

decide to do something else when in one

of these states.

There is one extra note here. If the

rolled-over area is not a rectangle, for

example a circle, you need to use Matte

Ink in the score. When using Matte ink,

Director will send the mouseEnter and

mouseLeave messages only when the

mouse enters and leaves a pixel that is in

the cast member, not just within the rec-

tangle of the sprite.

InterSprite Communication
The main thing that’s left to do is to

send a message to the Tooltip Display to

show the tooltip. Obviously we have not

written the Tooltip Display behavior yet.

However, we can now define what mes-

sages we expect to send it. This is known

as defining the “interface” of a behavior

or an object. We know from our pseudo-

code above that we will need to tell it to

show and hide the tooltip. Clearly, we will

need to define one handler for each of

these actions. However, when we want to

show a tooltip, thinking ahead, the code

to show a tooltip will need to know two

things: the text to display and the rectan-

gle of the rolled-over item (in order to

position the tooltip accurately). When the

behavior instance starts up, we can save

away the rectangle of the sprite in a

property variable. When we call the show

routine, we will need to pass in the text

and this rectangle.

The final issue is to find out to which

channel the Tooltip Display behavior

instance is attached. The way to do this is

to broadcast a message to all sprites and

ask them if they have the Tooltip Display

behavior attached. This can be done

using sendAllSprites. But sendAllSprites

can be “expensive” in terms of time, so we

don’t want to do this a lot. Here’s how we

will handle this: the first time we show a

tooltip, we will use a sendAllSprites to

send out a special message asking for the

sprite number of the tooltip display

sprite. When we find out the channel

number, we will save it in yet another

property variable. All property variables

54 • MXDJ.COM 6 • 2004

(in fact, all variables) start out with a

value of VOID. We can use the voidP()

function to check if we have figured out

the channel number. From then on,

whenever we want to send messages to

the Tooltip Display behavior, we will use

the saved channel number. When we

want to send a message to the specific

sprite with the Tooltip Display behavior

attached, we use the sendSprite com-

mand.

Tooltip Rollover Code
Putting all this together, we get the

code for the Tooltip Rollover (see Code II).

Notice that I added an on endSprite

handler to the end of the script. This just

sends a message to the Tooltip Display

sprite to turn off the tooltip when the

Rollover sprite ends.

Tooltip Display
Now we have to build the Tooltip

Display behavior script. We know from

our earlier discussion of the “interface”

of this behavior, that this behavior

script will at least need a Show, Hide,

and GetChannel handler. Let’s start by

building a skeleton behavior script (see

Code III).

The outline in Code III gives us most

of the functionality we need. In fact, at

this point, you can test if the intersprite

communication is working correctly. To

do this, create a field cast member and

give it a name like “Tooltip Display Field”.

Drag it to the stage and place it in the

highest-numbered channel. This way,

the tooltip will show over all other

sprites. In practice, this sprite will need

to be stretched across the entire movie

so that Tooltip Rollover behaviors can

communicate with it from anywhere in

the movie.

Now create a new behavior script, call

it “Tooltip Display”, and enter the code

from Code III. Be sure to make it of type

Behavior in the Behavior inspector.

Finally, drag the behavior from the cast

and drop it onto the field sprite in the

score. Open the message window and

run the program. When you hover over

the square or the circle for one second,

the word square or circle should appear

in the message window, along with the

appropriate rect.

Formatting the Text
When dealing with a field member,

there are many different properties that

can be manipulated to alter the way the

text is displayed. You can find a list of

these properties by clicking on the

member in the cast, then looking at the

field tab in the Property Inspector (see

Image III).

Of these properties, for a tooltip dis-

play you will want to set:

• editable to false

• boxtype to #adjust

• wordWrap to true

You can experiment with and cus-

tomize many of the other properties

here (e.g., border, color, bgColor, font,

fontStyle, fontSize, etc.) so that the

tooltip will appear the way you want

it. Any changes you make here will be

reflected for the display of all

tooltips.

However, since the text to be dis-

played in the tooltip changes each time

you rollover a different item, the rectan-

gle (width and height) of the member

needs to be set on the fly. Therefore,

setting the rectangle must be done in

code.

To begin the full Tooltip Display

behavior, we will define a few properties

for saving information, and set a few

property variables as constants to be

used in calculations later. At the end of

beginSprite handler, we make a call to a

move the tooltip off-screen so it is not

visible at the start of the program (see

Code IV).

An important thing to notice here is

that in the first line, we “cache” away a ref-

erence to the tooltip member into

pmTooltipText. This will make it easier to

refer to the member in the rest of the

code. Since Lingo only has to figure out

this member reference once, it helps

make the code fast. You’ll also notice that

one of the properties we created was

called pMaxWidthTooltip. This will be

used to set a maximum width for the

tooltip. If the text goes over the maxi-

mum width, the text will wrap onto two

or more lines. We’ll pick an arbitrary size

of 200 pixels to start width.

As we discussed earlier, when an

instance of the Tooltip Rollover behavior

instance calls the Tooltip Display instance,

it will pass in the text to display, and the

rectangle of the rolled over item. Now we

have all the information we need to code

the mTooltipDisplay_Show handler.

To size the rectangle properly for the

tooltip, we first set the rectangle of the

member our maximum width. Then we

put the text into the display member:

on mTooltipDisplay_Show me, theString,

rectRolledItem

member(pmTooltipText).rect = rect(0,

0, pMaxWidthTooltip, 0)

member(pmTooltipText).text =

theString

When we put the text into the mem-

ber, Director automatically adjusts the

height of the rectangle for us, but it

leaves the width at pMaxWidthTooltip.

For multiline tooltips this is fine. However,

if the tooltip is only one line of text, then

we must manually adjust the right side of

the tooltip member’s rectangle.

Lingo has a routine called

charPosToLoc that tells us the position of

any character in a string. We want to

know the position of the right edge of

the last character. To do this, we ask

Director the position of the number of

characters in the string, plus one. While

this is a non-existent character, Director

gives us the width of the full string.

Knowing this width, we can adjust the

rest of the member. Here’s how:

if pmTooltipText.lineCount = 1 then

-- Only one line, must shrink the

im
a

g
e

 I
II

■ MX Developer’s Journal
U.S. - Two Years (24) Cover: $143 You Pay: $49.99 / Save: $93 + FREE $198 CD
U.S. - One Year (12) Cover: $72 You Pay: $39.99 / Save: $32
Can/Mex - Two Years (24) $168 You Pay: $79.99 / Save: $88 + FREE $198 CD
Can/Mex - One Year (12) $84 You Pay: $49.99 / Save: $34
Int’l - Two Years (24) $216 You Pay: $89.99 / Save: $126 + FREE $198 CD
Int’l - One Year (12) $108 You Pay: $59.99 / Save: $48

SUBSCRIBE TODAY
TO MULTIPLE MAGAZINES

3-Pack
Pick any 3 of our
magazines and save
up to $21000

Pay only $99 for a
1 year subscription
plus a FREE CD
• 2 Year – $179.00
• Canada/Mexico – $189.00
• International – $199.00

6-Pack
Pick any 6 of our
magazines and save
up to $34000

Pay only $199 for a
1 year subscription
plus 2 FREE CDs
• 2 Year – $379.00
• Canada/Mexico – $399.00
• International – $449.00

9-Pack
Pick 9 of our
magazines and save
up to $27000

Pay only $399 for a
1 year subscription
plus 3 FREE CDs
• 2 Year – $699.00
• Canada/Mexico – $749.00
• International – $849.00

RECEIVE
YOUR DIGITAL

EDITION
ACCESS CODE
INSTANTLY

WITH YOUR PAID
SUBSCRIPTIONS

*WHILE SUPPILES LAST. OFFER SUBJECT TO CHANGE WITHOUT NOTICE

A LIMITED TIME SAVINGS OFFER FROM SYS-CON MEDIA

SUBSCRIBE TODAY
TO MULTIPLE MAGAZINES

Subscribe Online Today www.sys-con.com/2001/sub.cfm

AND SAVE UP TO $340 AND
RECEIVE UP TO 3 FREE CDs!*

■ Web Services Journal
U.S.- Two Years (24) Cover: $168 You Pay: $99.99 / Save: $68 + FREE $198 CD
U.S. - One Year (12) Cover: $84 You Pay: $69.99 / Save: $14
Can/Mex - Two Years (24) $192 You Pay: $129 / Save: $63 + FREE $198 CD
Can/Mex - One Year (12) $96 You Pay: $89.99 / Save: $6
Int’l - Two Years (24) $216 You Pay: $170 / Save: $46 + FREE $198 CD
Int’l - One Year (12) $108 You Pay: $99.99 / Save: $8

■ JDJ
U.S. - Two Years (24) Cover: $144 You Pay: $99.99 / Save: $45 + FREE $198 CD
U.S. - One Year (12) Cover: $72 You Pay: $69.99 / Save: $12
Can/Mex - Two Years (24) $168 You Pay: $119.99 / Save: $48 + FREE $198 CD
Can/Mex - One Year (12) $120 You Pay: $89.99 / Save: $40
Int’l - Two Years (24) $216 You Pay: $176 / Save: $40 + FREE $198 CD
Int’l - One Year (12) $108 You Pay: $99.99 / Save: $8

■ LinuxWorld Magazine
U.S. - Two Years (24) Cover: $143 You Pay: $79.99 / Save: $63 + FREE $198 CD
U.S. - One Year (12) Cover: $72 You Pay: $39.99 / Save: $32
Can/Mex - Two Years (24) $168 You Pay: $119.99 / Save: $48 + FREE $198 CD
Can/Mex - One Year (12) $84 You Pay: $79.99 / Save: $4
Int’l - Two Years (24) $216 You Pay: $176 / Save: $40 + FREE $198 CD
Int’l - One Year (12) $108 You Pay: $99.99 / Save: $8

■ .NET Developer’s Journal
U.S. - Two Years (24) Cover: $168 You Pay: $99.99 / Save: $68 + FREE $198 CD
U.S. - One Year (12) Cover: $84 You Pay: $69.99 / Save: $14
Can/Mex - Two Years (24) $192 You Pay: $129 / Save: $63 + FREE $198 CD
Can/Mex - One Year (12) $96 You Pay: $89.99 / Save: $6
Int’l - Two Years (24) $216 You Pay: $170 / Save: $46 + FREE $198 CD
Int’l - One Year (12) $108 You Pay: $99.99 / Save: $8

■ ColdFusion Developer’s Journal
U.S. - Two Years (24) Cover: $216 You Pay: $129 / Save: $87 + FREE $198 CD
U.S. - One Year (12) Cover: $108 You Pay: $89.99 / Save: $18
Can/Mex - Two Years (24) $240 You Pay: $159.99 / Save: $80 + FREE $198 CD
Can/Mex - One Year (12) $120 You Pay: $99.99 / Save: $20
Int’l - Two Years (24) $264 You Pay: $189 / Save: $75 + FREE $198 CD
Int’l - One Year (12) $132 You Pay: $129.99 / Save: $2

■ PowerBuilder Developer’s Journal
U.S. - Two Years (24) Cover: $360 You Pay: $169.99 / Save: $190 + FREE $198 CD
U.S. - One Year (12) Cover: $180 You Pay: $149 / Save: $31
Can/Mex - Two Years (24) $360 You Pay: $179.99 / Save: $180 + FREE $198 CD
Can/Mex - One Year (12) $180 You Pay: $169 / Save: $11
Int’l - Two Years (24) $360 You Pay: $189.99 / Save: $170 + FREE $198 CD
Int’l - One Year (12) $180 You Pay: $179 / Save: $1

■ WebSphere Journal
U.S. - Two Years (24) Cover: $216 You Pay: $129.00 / Save: $87 + FREE $198 CD
U.S. - One Year (12) Cover: $108 You Pay: $89.99 / Save: $18
Can/Mex - Two Years (24) $240 You Pay: $159.99 / Save: $80 + FREE $198 CD
Can/Mex - One Year (12) $120 You Pay: $99.99 / Save: $20
Int’l - Two Years (24) $264 You Pay: $189.00 / Save: $75
Int’l - One Year (12) $132 You Pay: $129.99 / Save: $2

■ 3-Pack ■ 1YR ■ 2YR ■ U.S. ■ Can/Mex ■ Intl.

■ 6-Pack ■ 1YR ■ 2YR ■ U.S. ■ Can/Mex ■ Intl.

■ 9-Pack ■ 1YR ■ 2YR ■ U.S. ■ Can/Mex ■ Intl.

Pick a 3-Pack, a 6-Pack or a 9-Pack

•Choose the Multi-Pack you want to order by checking
next to it below. •Check the number of years you want to
order. •Indicate your location by checking either U.S.,
Canada/Mexico or International. •Then choose which
magazines you want to include with your Multi-Pack order.

TO
ORDER

CALL TODAY! 888-303-5282

■ Information Storage + Security Journal
U.S. - Two Years (24) Cover: $143 You Pay: $49.99 / Save: $93 + FREE $198 CD
U.S. - One Year (12) Cover: $72 You Pay: $39.99 / Save: $39
Can/Mex - Two Years (24) $168 You Pay: $79.99 / Save: $88 + FREE $198 CD
Can/Mex - One Year (12) $84 You Pay: $49.99 / Save: $34
Int’l - Two Years (24) $216 You Pay: $89.99 / Save: $126 + FREE $198 CD
Int’l - One Year (12) $108 You Pay: $59.99 / Save: $48

c
o

d
e

 I
c

o
d

e
 II

56 • MXDJ.COM 6 • 2004

width to match the text

nChars =

pmTooltipText.text.char.count

locLastChar =

pmTooltipText.CharPosToLoc(nChars + 1)

textMemberRect = pmTooltipText.rect

textMemberRect.right =

locLastChar.locH

pmTooltipText.rect = textMemberRect

end if

Placing the Tooltip
Field members work differently from

graphics members as far as the registra-

tion point is concerned. Since you can

change text on the fly, field members

have their registration point in the upper

left hand corner. This makes the math

slightly tricky. We will calculate the hori-

zontal and vertical locations to display

the tooltip separately.

We want to position the tooltip cen-

tered on, and a little below the rolled

item. Earlier we declared a property vari-

able, pnPixelsBelow, and set it a small

number of pixels (4) to give us some sep-

aration from the rolled item. To display

the tooltip we make the calculations

shown here:

-- Calculate locH and locV

centerH = (rectRoll.left +

rectRoll.right) / 2

locHTip – centerH –

(pmToolTipText.width /2)

locVTip = rectRoll.bottom +

pnPixelsBelow

Finally, we use the locV and the locH

we just calculated to properly position

the tooltip:

sprite(spriteNum).loc = point(locHTip,

locVTip)

Code V is the resulting full script of

the Tooltip Display behavior.

Extensions
We have shown the basic functionali-

ty of tooltips. In practice, there are a few

things we would want to do to extend

these behaviors.

In the Tooltip Rollover behavior, we

would want the ability to alter the text to

be displayed. Ideally, by default we could

use the name of the cast member, but we

would like to have the ability to change

that to any text. Further, we would like to

have the ability to change the delay peri-

od. While one second may be fine, we

might like to set some tooltips to show

up in less or more time.

Both of these can be accomplished

relatively easily. To allow for these types

of modifications, there is a very powerful

handler called getPropertyDescription-

List that can be built into the Tooltip

Rollover behavior. Using

getPropertyDescriptionList, we can spec-

ify that when the developer drops a

behavior onto a sprite, Director will bring

up a dialog box that shows defaults, but

allows the developer to change values.

We would probably want the Tooltip

Display behavior to be a little smarter

about placement of the tooltip. If an

interface element is too close to the bot-

tom of the screen, we would want the

tooltip to display above the item.

Likewise, if the interface element is too

close to the left or right edge, we would

want the display to be positioned so that

the entire tooltip could be readable on

the stage.

Further, we might want to be able to

modify more of the field properties such

as Margin and Framing, and have the

Tooltip Display behavior adjust automat-

ically. Doing so requires a little more

math in the mTooltipDisplay_Show

method.

I am placing a fully functional and

fully documented set of behaviors that

includes these extensions in a sample

movie on my Web site at: http://furry-

pants.com/ftp/tooltips.dir.

Conclusion
Tooltips have become valuable addi-

tions to improving the clarity of user

interface designs. Using the two drag-

and-drop behaviors described here,

Director developers can now add this

functionality quickly and easily.

Irv Kalb has been working as an inde-

pendent software developer in Director

and Lingo for over ten years. He has

written extensively on object oriented

programming in Lingo, and his on-line

Ebook on this topic can be found at

www.furrypants.com/loope. Irv is

always interested in discussing new

projects. IrvKalb-MXDJ4114@

mailblocks.com

property psymState

on beginSprite me

psymState = #notOver

end

on mouseEnter me

psymState = #overAndWaiting

* Start a timer *

end mouseEnter

on mouseLeave me

* Hide the tooltip *

psymState = #notOver

end mouseLeave

on mouseUp me

* Hide the tooltip *

psymState = #notOver

end

on exitFrame me

case psymState of

#notOver:

nothing

#overAndWaiting:

* if we’ve been in this state for

more than 1 second then *

* show the tooltip *

psymState = #showing

end if

#showing:

nothing

end case

end

Code II

property spriteNum -- the channel in

which thhe sprite is located

property pName -- the text to dis-

play

property pmsShowTime -- the millisec-

onds at which to show the tooltip

property psymState -- #notOver,

#overAndWaiting, #showing

property pRect -- the rectangle of

the rollover area

property pchToolTipDisplay -- channel

number of the ToolTip Display sprite

on beginSprite me

pName =

sprite(spriteNum).member.name

psymState = #notOver

pRect = sprite(spriteNum).rect

end beginSprite

on mouseEnter me

psymState = #overAndWaiting

pmsShowTime = the milliseconds +

1000

c
o

d
e

 IV
c

o
d

e
 V

c
o

d
e

 I
II

6 • 2004 MXDJ.COM • 57

end mouseEnter

on mouseLeave me

sendSprite(pchToolTipDisplay, #mToolTipDisplay_Hide)

psymState = #notOver

end mouseLeave

on mouseUp me

sendSprite(pchToolTipDisplay, #mToolTipDisplay_Hide)

psymState = #notOver

end

on exitFrame me case psymState of

#notOver:

nothing

#overAndWaiting:

-- See if it's time to show the tooltip

if the milliseconds > pmsShowTime then

me.mShowToolTip()

psymState = #showing

end if

#showing:

nothing

end case

end

on mShowToolTip me

-- The first time, the channel of the tooltip display is

not known yet, let's find it

if voidp(pchToolTipDisplay) then pchToolTipDisplay =

sendAllSprites(#mToolTipDisplay_GetChannel)

end if

sendSprite(pchToolTipDisplay, #mTooltipDisplay_Show,

pName, pRect)

end

on endSprite me

sendSprite(pchToolTipDisplay, #mToolTipDisplay_Hide)

end

Code III

property spriteNum

on beginSprite me

me.mTooltipDisplay_Hide() -- start off hidden

end

on mTooltipDisplay_GetChannel me

return spriteNum

end

on mTooltipDisplay_Hide me

sprite(spriteNum).locV = -1000 -- move offstage

end

on mTooltipDisplay_Show me, theString, rectRolledItem

put theString && rectRolledItem

end

Code IV

property spriteNum

property pmTooltipText

property pMaxWidthTooltip

property pnPixelsAboveOrBelow

on beginSprite me

pmTooltipText = sprite(spriteNum).member

pnPixelsBelow = 4 -- spacing between rect and tooltip

pMaxWidthTooltip = 200 -- maximum width of the tooltip

me.mTooltipDisplay_Hide() -- start off hidden

end

Code V

property spriteNum

property pmTooltipText

property pMaxWidthToolTip

property pnPixelsBelow

on beginSprite me

pmToolTipText = sprite(spriteNum).member

pnPixelsBelow = 4 -- spacing between rect and tooltip

pMaxWidthToolTip = 200 -- maximum width of the tooltip

me.mToolTipDisplay_Hide() -- start off hidden

end

on mToolTipDisplay_Hide me

sprite(spriteNum).locV = -1000 -- move offstage

end

on mToolTipDisplay_GetChannel me

return spriteNum

end

on endSprite me

pmToolTipText.text = " "

me.mToolTipDisplay_Hide()

updateStage

end

on mToolTipDisplay_Show me, theString, rectRoll -- Set

the max width of the tooltip

pmToolTipText.rect = rect(0, 0, pMaxWidthToolTip, 0)

pmToolTipText.text = theString

if pmToolTipText.lineCount = 1 then

-- Only one line, must shrink the width to match the

text

nChars = pmToolTipText.text.char.count

locLastChar = pmToolTipText.CharPosToLoc(nChars + 1)

textMemberRect = pmToolTipText.rect

textMemberRect.right = locLastChar.locH

pmToolTipText.rect = textMemberRect

end if

-- Calculate locH and locV centerH = (rectRoll.left +

rectRoll.right) / 2

locHTip = centerH - (pmToolTipText.width / 2)

locVTip = rectRoll.bottom + pnPixelsBelow

-- Finally, assign the tooltip location

sprite(spriteNum).loc = point(locHTip, locVTip) end

58 • MXDJ.COM 6 • 2004

va
n

g
u

a
rd

pecialmoves has launched Church of Fools, a

groundbreaking 3D multi-user virtual church built

on top of their flexible interaction engine, using

Shockwave and Flash Communication Server. Created for

shipoffools.com, an irreverent Christian Web site, Church of

Fools allows people from around the globe to talk, pray,

and attend services in a stunning Romanesque virtual

church.

Users choose a screen name and customize their avatar,

then they’re free to explore the environment. They can sit

on pews, kneel at the altar, and even wander down to the

crypt for a discussion with the preacher after a service.

Controls allow worshipers to view the real 3D environment

from any angle and to perform gestures such as “praise the

lord” hallelujah.

It’s a massive worldwide hit with tens of thousands of

visitors a day; at its peak Church

of Fools welcomed 41,000 people

within 24 hours. Church has

never been so much fun.

www.specialmoves.com

Church of Fools

s

